--- license: apache-2.0 library_name: diffusers pipeline_tag: unconditional-image-generation base_model: shallowdream204/BitDance-ImageNet language: - en tags: - bitdance - imagenet - class-conditional - custom-pipeline - diffusers --- # BitDance-ImageNet (Diffusers) Diffusers-compatible BitDance ImageNet checkpoints for class-conditional generation at `256x256`. ## Available Subfolders - `BitDance_B_1x` (`parallel_num=1`) - `BitDance_B_4x` (`parallel_num=4`) - `BitDance_B_16x` (`parallel_num=16`) - `BitDance_L_1x` (`parallel_num=1`) - `BitDance_H_1x` (`parallel_num=1`) All variants include a custom `BitDanceImageNetPipeline` and support ImageNet class IDs (`0-999`). ## Requirements - `flash-attn` is required for model execution and sampling. - Install it in your environment before loading the pipeline. ## Quickstart (native diffusers) ```python import torch from diffusers import DiffusionPipeline repo_id = "BiliSakura/BitDance-ImageNet-diffusers" subfolder = "BitDance_B_1x" # or BitDance_B_4x, BitDance_B_16x, BitDance_L_1x, BitDance_H_1x pipe = DiffusionPipeline.from_pretrained( repo_id, subfolder=subfolder, trust_remote_code=True, torch_dtype=torch.float16, ).to("cuda") # ImageNet class 207 = golden retriever out = pipe( class_labels=207, num_images_per_label=1, sample_steps=100, cfg_scale=4.6, ) out.images[0].save("bitdance_imagenet.png") ``` ## Local Path Note When loading from a local clone, do not point `from_pretrained` to the repo root unless you also provide `subfolder=...`. Each variant folder contains its own `model_index.json`, so the most reliable local usage is to load the variant directory directly: ```python from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained( "/path/to/BitDance-ImageNet-diffusers/BitDance_B_1x", trust_remote_code=True, ) ``` ## Model Metadata - Pipeline class: `BitDanceImageNetPipeline` - Diffusers version in configs: `0.36.0` - Resolution: `256x256` - Number of classes: `1000` - Autoencoder class: `BitDanceImageNetAutoencoder` ## Citation If you use this model, please cite BitDance and Diffusers: ```bibtex @article{ai2026bitdance, title = {BitDance: Scaling Autoregressive Generative Models with Binary Tokens}, author = {Ai, Yuang and Han, Jiaming and Zhuang, Shaobin and Hu, Xuefeng and Yang, Ziyan and Yang, Zhenheng and Huang, Huaibo and Yue, Xiangyu and Chen, Hao}, journal = {arXiv preprint arXiv:2602.14041}, year = {2026} } @inproceedings{von-platen-etal-2022-diffusers, title = {Diffusers: State-of-the-art diffusion models}, author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Damar Jablonski and Hernan Bischof and Thomas Wolf}, booktitle = {GitHub repository}, year = {2022}, url = {https://github.com/huggingface/diffusers} } ``` ## License This repository is distributed under the Apache-2.0 license, consistent with the upstream BitDance release.