BiliSakura's picture
Update all files for BitDance-Tokenizer-diffusers
dd539a9 verified
from __future__ import annotations
import math
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
try:
from flash_attn import flash_attn_func # type: ignore
_FLASH_ATTN_AVAILABLE = True
except ImportError:
flash_attn_func = None # type: ignore
_FLASH_ATTN_AVAILABLE = False
def timestep_embedding(t: torch.Tensor, dim: int, max_period: int = 10000, time_factor: float = 1000.0) -> torch.Tensor:
half = dim // 2
t = time_factor * t.float()
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
args = t[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
def time_shift_func(t: torch.Tensor, flow_shift: float = 1.0, sigma: float = 1.0) -> torch.Tensor:
return (1.0 / flow_shift) / ((1.0 / flow_shift) + (1.0 / t - 1.0) ** sigma)
def get_score_from_velocity(velocity: torch.Tensor, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
alpha_t, d_alpha_t = t, 1
sigma_t, d_sigma_t = 1 - t, -1
mean = x
reverse_alpha_ratio = alpha_t / d_alpha_t
var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
score = (reverse_alpha_ratio * velocity - mean) / var
return score
def get_velocity_from_cfg(velocity: torch.Tensor, cfg: float, cfg_mult: int) -> torch.Tensor:
if cfg_mult == 2:
cond_v, uncond_v = torch.chunk(velocity, 2, dim=0)
velocity = uncond_v + cfg * (cond_v - uncond_v)
return velocity
def _randn_like(x: torch.Tensor, generator: Optional[torch.Generator]) -> torch.Tensor:
if generator is None:
return torch.randn_like(x)
return torch.randn(x.shape, device=x.device, dtype=x.dtype, generator=generator)
def euler_step(x: torch.Tensor, v: torch.Tensor, dt: float, cfg: float, cfg_mult: int) -> torch.Tensor:
with torch.amp.autocast("cuda", enabled=False):
v = v.to(torch.float32)
v = get_velocity_from_cfg(v, cfg, cfg_mult)
x = x + v * dt
return x
def euler_maruyama_step(
x: torch.Tensor,
v: torch.Tensor,
t: torch.Tensor,
dt: float,
cfg: float,
cfg_mult: int,
generator: Optional[torch.Generator],
) -> torch.Tensor:
with torch.amp.autocast("cuda", enabled=False):
v = v.to(torch.float32)
v = get_velocity_from_cfg(v, cfg, cfg_mult)
score = get_score_from_velocity(v, x, t)
drift = v + (1 - t) * score
noise_scale = (2.0 * (1.0 - t) * dt) ** 0.5
x = x + drift * dt + noise_scale * _randn_like(x, generator=generator)
return x
def euler_maruyama(
input_dim: int,
forward_fn,
c: torch.Tensor,
cfg: float = 1.0,
num_sampling_steps: int = 20,
last_step_size: float = 0.05,
time_shift: float = 1.0,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
cfg_mult = 1
if cfg > 1.0:
cfg_mult += 1
x_shape = list(c.shape)
x_shape[0] = x_shape[0] // cfg_mult
x_shape[-1] = input_dim
x = torch.randn(x_shape, device=c.device, dtype=c.dtype, generator=generator)
t_all = torch.linspace(0, 1 - last_step_size, num_sampling_steps + 1, device=c.device, dtype=torch.float32)
t_all = time_shift_func(t_all, time_shift)
dt = t_all[1:] - t_all[:-1]
t = torch.tensor(0.0, device=c.device, dtype=torch.float32)
t_batch = torch.zeros(c.shape[0], device=c.device, dtype=c.dtype)
for i in range(num_sampling_steps):
t_batch[:] = t
combined = torch.cat([x] * cfg_mult, dim=0)
output = forward_fn(combined, t_batch, c)
if output.dim() == 2:
v = (output - combined) / (1 - t_batch.view(-1, 1)).clamp_min(0.05)
elif output.dim() == 3:
v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
else:
raise ValueError(f"Unsupported output rank from diffusion head: {output.dim()}")
x = euler_maruyama_step(x, v, t, float(dt[i]), cfg, cfg_mult, generator=generator)
t += dt[i]
combined = torch.cat([x] * cfg_mult, dim=0)
t_batch[:] = 1 - last_step_size
output = forward_fn(combined, t_batch, c)
if output.dim() == 2:
v = (output - combined) / (1 - t_batch.view(-1, 1)).clamp_min(0.05)
elif output.dim() == 3:
v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
else:
raise ValueError(f"Unsupported output rank from diffusion head: {output.dim()}")
x = euler_step(x, v, last_step_size, cfg, cfg_mult)
return torch.cat([x] * cfg_mult, dim=0)
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size: int, frequency_embedding_size: int = 256) -> None:
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t: torch.Tensor) -> torch.Tensor:
t_freq = timestep_embedding(t, self.frequency_embedding_size)
t_freq = t_freq.to(self.mlp[0].weight.dtype)
return self.mlp(t_freq)
class FinalLayer(nn.Module):
def __init__(self, channels: int, out_channels: int) -> None:
super().__init__()
self.norm_final = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=False)
self.ada_ln_modulation = nn.Linear(channels, channels * 2, bias=True)
self.linear = nn.Linear(channels, out_channels, bias=True)
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
scale, shift = self.ada_ln_modulation(y).chunk(2, dim=-1)
x = self.norm_final(x) * (1.0 + scale) + shift
return self.linear(x)
class Attention(nn.Module):
def __init__(self, dim: int, n_head: int) -> None:
super().__init__()
if dim % n_head != 0:
raise ValueError(f"dim ({dim}) must be divisible by n_head ({n_head}).")
self.dim = dim
self.head_dim = dim // n_head
self.n_head = n_head
total_kv_dim = (self.n_head * 3) * self.head_dim
self.wqkv = nn.Linear(dim, total_kv_dim, bias=True)
self.wo = nn.Linear(dim, dim, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wqkv(x).chunk(3, dim=-1)
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_head, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_head, self.head_dim)
if _FLASH_ATTN_AVAILABLE and xq.is_cuda:
output = flash_attn_func(xq, xk, xv, causal=False)
else:
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
output = F.scaled_dot_product_attention(xq, xk, xv, dropout_p=0.0, is_causal=False)
output = output.transpose(1, 2).contiguous()
output = output.view(bsz, seqlen, self.dim)
return self.wo(output)
class TransBlock(nn.Module):
def __init__(self, channels: int, use_swiglu: bool = False) -> None:
super().__init__()
self.channels = channels
self.norm1 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
self.attn = Attention(channels, n_head=channels // 128)
self.norm2 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
hidden_dim = int(channels * 1.5)
self.use_swiglu = use_swiglu
if not use_swiglu:
self.mlp = nn.Sequential(
nn.Linear(channels, hidden_dim),
nn.SiLU(),
nn.Linear(hidden_dim, channels),
)
else:
self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
self.w2 = nn.Linear(hidden_dim, channels, bias=True)
def forward(
self,
x: torch.Tensor,
scale1: torch.Tensor,
shift1: torch.Tensor,
gate1: torch.Tensor,
scale2: torch.Tensor,
shift2: torch.Tensor,
gate2: torch.Tensor,
) -> torch.Tensor:
h = self.norm1(x) * (1 + scale1) + shift1
h = self.attn(h)
x = x + h * gate1
h = self.norm2(x) * (1 + scale2) + shift2
if not self.use_swiglu:
h = self.mlp(h)
else:
h1, h2 = self.w1(h).chunk(2, dim=-1)
h = self.w2(F.silu(h1) * h2)
return x + h * gate2
class TransEncoder(nn.Module):
def __init__(
self,
in_channels: int,
model_channels: int,
z_channels: int,
num_res_blocks: int,
num_ada_ln_blocks: int = 2,
grad_checkpointing: bool = False,
parallel_num: int = 4,
use_swiglu: bool = False,
) -> None:
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = in_channels
self.num_res_blocks = num_res_blocks
self.grad_checkpointing = grad_checkpointing
self.parallel_num = parallel_num
self.time_embed = TimestepEmbedder(model_channels)
self.cond_embed = nn.Linear(z_channels, model_channels)
self.input_proj = nn.Linear(in_channels, model_channels)
self.res_blocks = nn.ModuleList([TransBlock(model_channels, use_swiglu) for _ in range(num_res_blocks)])
self.ada_ln_blocks = nn.ModuleList(
[nn.Linear(model_channels, model_channels * 6, bias=True) for _ in range(num_ada_ln_blocks)]
)
self.ada_ln_switch_freq = max(1, num_res_blocks // num_ada_ln_blocks)
if (num_res_blocks % self.ada_ln_switch_freq) != 0:
raise ValueError("num_res_blocks must be divisible by num_ada_ln_blocks")
self.final_layer = FinalLayer(model_channels, self.out_channels)
self.initialize_weights()
def initialize_weights(self) -> None:
def _basic_init(module: nn.Module) -> None:
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
for block in self.ada_ln_blocks:
nn.init.constant_(block.weight, 0)
nn.init.constant_(block.bias, 0)
nn.init.constant_(self.final_layer.ada_ln_modulation.weight, 0)
nn.init.constant_(self.final_layer.ada_ln_modulation.bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x: torch.Tensor, t: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
dtype = next(self.parameters()).dtype
x = x.to(dtype)
t = t.to(dtype)
c = c.to(dtype)
x = self.input_proj(x)
t = self.time_embed(t).unsqueeze(1)
c = self.cond_embed(c)
y = F.silu(t + c)
scale1, shift1, gate1, scale2, shift2, gate2 = self.ada_ln_blocks[0](y).chunk(6, dim=-1)
for i, block in enumerate(self.res_blocks):
if i > 0 and i % self.ada_ln_switch_freq == 0:
ada_ln_block = self.ada_ln_blocks[i // self.ada_ln_switch_freq]
scale1, shift1, gate1, scale2, shift2, gate2 = ada_ln_block(y).chunk(6, dim=-1)
x = block(x, scale1, shift1, gate1, scale2, shift2, gate2)
output = self.final_layer(x, y)
return 2 * torch.sigmoid(output) - 1
class BitDanceDiffusionHead(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
ch_target: int,
ch_cond: int,
ch_latent: int,
depth_latent: int,
depth_adanln: int,
grad_checkpointing: bool = False,
time_shift: float = 1.0,
time_schedule: str = "logit_normal",
P_mean: float = 0.0,
P_std: float = 1.0,
parallel_num: int = 4,
diff_batch_mul: int = 1,
use_swiglu: bool = False,
) -> None:
super().__init__()
self.ch_target = ch_target
self.time_shift = time_shift
self.time_schedule = time_schedule
self.P_mean = P_mean
self.P_std = P_std
self.diff_batch_mul = diff_batch_mul
self.net = TransEncoder(
in_channels=ch_target,
model_channels=ch_latent,
z_channels=ch_cond,
num_res_blocks=depth_latent,
num_ada_ln_blocks=depth_adanln,
grad_checkpointing=grad_checkpointing,
parallel_num=parallel_num,
use_swiglu=use_swiglu,
)
def forward(self, x: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
with torch.autocast(device_type="cuda", enabled=False):
with torch.no_grad():
if self.time_schedule == "logit_normal":
t = (torch.randn((x.shape[0]), device=x.device) * self.P_std + self.P_mean).sigmoid()
if self.time_shift != 1.0:
t = time_shift_func(t, self.time_shift)
elif self.time_schedule == "uniform":
t = torch.rand((x.shape[0]), device=x.device)
if self.time_shift != 1.0:
t = time_shift_func(t, self.time_shift)
else:
raise NotImplementedError(f"Unknown time_schedule={self.time_schedule}")
e = torch.randn_like(x)
ti = t.view(-1, 1, 1)
z = (1.0 - ti) * e + ti * x
v = (x - z) / (1 - ti).clamp_min(0.05)
if self.diff_batch_mul > 1:
chunks = self.diff_batch_mul
x_pred_list = []
z_chunks = torch.chunk(z, chunks, dim=0)
t_chunks = torch.chunk(t, chunks, dim=0)
cond_chunks = torch.chunk(cond, chunks, dim=0)
for z_i, t_i, cond_i in zip(z_chunks, t_chunks, cond_chunks):
x_pred_list.append(self.net(z_i, t_i, cond_i))
x_pred = torch.cat(x_pred_list, dim=0)
else:
x_pred = self.net(z, t, cond)
v_pred = (x_pred - z) / (1 - ti).clamp_min(0.05)
with torch.autocast(device_type="cuda", enabled=False):
v_pred = v_pred.float()
loss = torch.mean((v - v_pred) ** 2, dim=2)
return loss
def sample(
self,
z: torch.Tensor,
cfg: float,
num_sampling_steps: int,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
return euler_maruyama(
self.ch_target,
self.net.forward,
z,
cfg,
num_sampling_steps=num_sampling_steps,
time_shift=self.time_shift,
generator=generator,
)
def initialize_weights(self) -> None:
self.net.initialize_weights()