from __future__ import annotations from typing import Any, Dict, Optional, Sequence import torch import torch.nn.functional as F from einops import rearrange from torch import nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin def swish(x: torch.Tensor) -> torch.Tensor: return x * torch.sigmoid(x) class ResBlock(nn.Module): def __init__( self, in_filters: int, out_filters: int, use_conv_shortcut: bool = False, use_agn: bool = False, ) -> None: super().__init__() self.in_filters = in_filters self.out_filters = out_filters self.use_conv_shortcut = use_conv_shortcut self.use_agn = use_agn if not use_agn: self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6) self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6) self.conv1 = nn.Conv2d(in_filters, out_filters, kernel_size=3, padding=1, bias=False) self.conv2 = nn.Conv2d(out_filters, out_filters, kernel_size=3, padding=1, bias=False) if in_filters != out_filters: if use_conv_shortcut: self.conv_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=3, padding=1, bias=False) else: self.nin_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=1, padding=0, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: residual = x if not self.use_agn: x = self.norm1(x) x = swish(x) x = self.conv1(x) x = self.norm2(x) x = swish(x) x = self.conv2(x) if self.in_filters != self.out_filters: if self.use_conv_shortcut: residual = self.conv_shortcut(residual) else: residual = self.nin_shortcut(residual) return x + residual class Encoder(nn.Module): def __init__( self, *, ch: int, out_ch: int, in_channels: int, num_res_blocks: int, z_channels: int, ch_mult: Sequence[int] = (1, 2, 2, 4), resolution: Optional[int] = None, double_z: bool = False, ) -> None: super().__init__() del out_ch, double_z self.in_channels = in_channels self.z_channels = z_channels self.resolution = resolution self.num_res_blocks = num_res_blocks self.num_blocks = len(ch_mult) self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, padding=1, bias=False) self.down = nn.ModuleList() in_ch_mult = (1,) + tuple(ch_mult) block_out = ch * ch_mult[0] for i_level in range(self.num_blocks): block = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for _ in range(self.num_res_blocks): block.append(ResBlock(block_in, block_out)) block_in = block_out down = nn.Module() down.block = block if i_level < self.num_blocks - 1: down.downsample = nn.Conv2d(block_out, block_out, kernel_size=3, stride=2, padding=1) self.down.append(down) self.mid_block = nn.ModuleList([ResBlock(block_out, block_out) for _ in range(self.num_res_blocks)]) self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6) self.conv_out = nn.Conv2d(block_out, z_channels, kernel_size=1) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv_in(x) for i_level in range(self.num_blocks): for i_block in range(self.num_res_blocks): x = self.down[i_level].block[i_block](x) if i_level < self.num_blocks - 1: x = self.down[i_level].downsample(x) for block in self.mid_block: x = block(x) x = self.norm_out(x) x = swish(x) x = self.conv_out(x) return x def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor: if x.dim() < 3: raise ValueError("Expected a channels-first (*CHW) tensor of at least 3 dims.") c, h, w = x.shape[-3:] s = block_size**2 if c % s != 0: raise ValueError(f"Expected C divisible by {s}, but got C={c}.") outer_dims = x.shape[:-3] x = x.view(-1, block_size, block_size, c // s, h, w) x = x.permute(0, 3, 4, 1, 5, 2) x = x.contiguous().view(*outer_dims, c // s, h * block_size, w * block_size) return x class Upsampler(nn.Module): def __init__(self, dim: int) -> None: super().__init__() self.conv1 = nn.Conv2d(dim, dim * 4, kernel_size=3, padding=1) def forward(self, x: torch.Tensor) -> torch.Tensor: return depth_to_space(self.conv1(x), block_size=2) class AdaptiveGroupNorm(nn.Module): def __init__(self, z_channel: int, in_filters: int, num_groups: int = 32, eps: float = 1e-6) -> None: super().__init__() self.gn = nn.GroupNorm(num_groups=num_groups, num_channels=in_filters, eps=eps, affine=False) self.gamma = nn.Linear(z_channel, in_filters) self.beta = nn.Linear(z_channel, in_filters) self.eps = eps def forward(self, x: torch.Tensor, quantizer: torch.Tensor) -> torch.Tensor: bsz, channels, _, _ = x.shape scale = rearrange(quantizer, "b c h w -> b c (h w)") scale = scale.var(dim=-1) + self.eps scale = scale.sqrt() scale = self.gamma(scale).view(bsz, channels, 1, 1) bias = rearrange(quantizer, "b c h w -> b c (h w)") bias = bias.mean(dim=-1) bias = self.beta(bias).view(bsz, channels, 1, 1) x = self.gn(x) return scale * x + bias class Decoder(nn.Module): def __init__( self, *, ch: int, out_ch: int, in_channels: int, num_res_blocks: int, z_channels: int, ch_mult: Sequence[int] = (1, 2, 2, 4), resolution: Optional[int] = None, double_z: bool = False, ) -> None: super().__init__() del in_channels, resolution, double_z self.num_blocks = len(ch_mult) self.num_res_blocks = num_res_blocks block_in = ch * ch_mult[self.num_blocks - 1] self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, padding=1, bias=True) self.mid_block = nn.ModuleList([ResBlock(block_in, block_in) for _ in range(self.num_res_blocks)]) self.up = nn.ModuleList() self.adaptive = nn.ModuleList() for i_level in reversed(range(self.num_blocks)): block = nn.ModuleList() block_out = ch * ch_mult[i_level] self.adaptive.insert(0, AdaptiveGroupNorm(z_channels, block_in)) for _ in range(self.num_res_blocks): block.append(ResBlock(block_in, block_out)) block_in = block_out up = nn.Module() up.block = block if i_level > 0: up.upsample = Upsampler(block_in) self.up.insert(0, up) self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6) self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, padding=1) def forward(self, z: torch.Tensor) -> torch.Tensor: style = z.clone() z = self.conv_in(z) for block in self.mid_block: z = block(z) for i_level in reversed(range(self.num_blocks)): z = self.adaptive[i_level](z, style) for i_block in range(self.num_res_blocks): z = self.up[i_level].block[i_block](z) if i_level > 0: z = self.up[i_level].upsample(z) z = self.norm_out(z) z = swish(z) z = self.conv_out(z) return z class GANDecoder(nn.Module): def __init__( self, *, ch: int, out_ch: int, in_channels: int, num_res_blocks: int, z_channels: int, ch_mult: Sequence[int] = (1, 2, 2, 4), resolution: Optional[int] = None, double_z: bool = False, ) -> None: super().__init__() del in_channels, resolution, double_z self.num_blocks = len(ch_mult) self.num_res_blocks = num_res_blocks block_in = ch * ch_mult[self.num_blocks - 1] self.conv_in = nn.Conv2d(z_channels * 2, block_in, kernel_size=3, padding=1, bias=True) self.mid_block = nn.ModuleList([ResBlock(block_in, block_in) for _ in range(self.num_res_blocks)]) self.up = nn.ModuleList() self.adaptive = nn.ModuleList() for i_level in reversed(range(self.num_blocks)): block = nn.ModuleList() block_out = ch * ch_mult[i_level] self.adaptive.insert(0, AdaptiveGroupNorm(z_channels, block_in)) for _ in range(self.num_res_blocks): block.append(ResBlock(block_in, block_out)) block_in = block_out up = nn.Module() up.block = block if i_level > 0: up.upsample = Upsampler(block_in) self.up.insert(0, up) self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6) self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, padding=1) def forward(self, z: torch.Tensor) -> torch.Tensor: style = z.clone() noise = torch.randn_like(z, device=z.device) z = torch.cat([z, noise], dim=1) z = self.conv_in(z) for block in self.mid_block: z = block(z) for i_level in reversed(range(self.num_blocks)): z = self.adaptive[i_level](z, style) for i_block in range(self.num_res_blocks): z = self.up[i_level].block[i_block](z) if i_level > 0: z = self.up[i_level].upsample(z) z = self.norm_out(z) z = swish(z) z = self.conv_out(z) return z class BitDanceAutoencoder(ModelMixin, ConfigMixin): @register_to_config def __init__(self, ddconfig: Dict[str, Any], gan_decoder: bool = False) -> None: super().__init__() self.encoder = Encoder(**ddconfig) self.decoder = GANDecoder(**ddconfig) if gan_decoder else Decoder(**ddconfig) @property def z_channels(self) -> int: return int(self.config.ddconfig["z_channels"]) @property def patch_size(self) -> int: ch_mult = self.config.ddconfig["ch_mult"] return 2 ** (len(ch_mult) - 1) def encode(self, x: torch.Tensor) -> torch.Tensor: h = self.encoder(x) codebook_value = torch.tensor([1.0], device=h.device, dtype=h.dtype) quant_h = torch.where(h > 0, codebook_value, -codebook_value) return quant_h def decode(self, quant: torch.Tensor) -> torch.Tensor: return self.decoder(quant) def forward(self, x: torch.Tensor) -> torch.Tensor: quant = self.encode(x) return self.decode(quant)