|
|
import os |
|
|
|
|
|
from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split, Features, Value |
|
|
|
|
|
|
|
|
class WikiTableQuestionsSelection(GeneratorBasedBuilder): |
|
|
""" |
|
|
A simple Hugging Face dataset builder for evaluating question-answering (QA) |
|
|
over tabular data, using file paths as context (CSV, HTML, TSV). |
|
|
|
|
|
The dataset is loaded from a JSON file containing QA samples and context file paths. |
|
|
""" |
|
|
|
|
|
def _info(self): |
|
|
""" |
|
|
Returns the metadata and schema of the dataset. |
|
|
|
|
|
Returns: |
|
|
DatasetInfo: Contains description, features (schema), and supervised keys. |
|
|
""" |
|
|
return DatasetInfo( |
|
|
description="QA over tabular data with file paths as context", |
|
|
features=Features({ |
|
|
"id": Value("string"), |
|
|
"utterance": Value("string"), |
|
|
"target_value": Value("string"), |
|
|
"context": Features({ |
|
|
"csv": Value("string"), |
|
|
"html": Value("string"), |
|
|
"tsv": Value("string"), |
|
|
}), |
|
|
}), |
|
|
supervised_keys=None, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
""" |
|
|
Downloads and defines dataset splits. |
|
|
|
|
|
Args: |
|
|
dl_manager (DownloadManager): The Hugging Face datasets download manager. |
|
|
|
|
|
Returns: |
|
|
List[SplitGenerator]: A list containing a single test split generator. |
|
|
""" |
|
|
data_path = dl_manager.download("examples/examples-test.json") |
|
|
return [ |
|
|
SplitGenerator(name=Split.TEST, gen_kwargs={"filepath": data_path}), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
|
""" |
|
|
Yields examples from the dataset JSON file. |
|
|
|
|
|
Each example consists of a question, target value, and paths to context files |
|
|
(CSV, HTML, TSV). The relative paths are resolved into absolute paths based |
|
|
on the JSON file's directory. |
|
|
|
|
|
Args: |
|
|
filepath (str): Path to the JSON file containing dataset examples. |
|
|
|
|
|
Yields: |
|
|
Tuple[int, dict]: A tuple of the index and the data sample dictionary. |
|
|
""" |
|
|
import json |
|
|
with open(filepath, encoding="utf-8") as f: |
|
|
data = json.load(f) |
|
|
|
|
|
for i, item in enumerate(data): |
|
|
yield i, { |
|
|
"id": item["id"], |
|
|
"utterance": item["utterance"], |
|
|
"target_value": item["target_value"], |
|
|
"context": { |
|
|
"csv": item["context"]["csv"], |
|
|
"html": item["context"]["html"], |
|
|
"tsv": item["context"]["tsv"], |
|
|
}, |
|
|
} |
|
|
|