File size: 3,034 Bytes
a21df21
 
 
 
 
 
 
 
 
d78dea8
 
e3844e4
 
 
 
 
019c80f
e3844e4
 
 
 
 
 
4115abc
e3844e4
 
 
c4d5de4
e3844e4
c4d5de4
e3844e4
 
c4d5de4
e3844e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9327c4
99f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
d78dea8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: mit
task_categories:
- text-generation
language:
- en
tags:
- code
- javascript
size_categories:
- 1M<n<10M
---


**JavaScript-Code-Large**

JavaScript-Code-Large is a large-scale corpus of JavaScript source code comprising around **5 million** JavaScript files. The dataset is designed to support research in large language model (LLM) pretraining, code intelligence, software engineering automation, and program analysis for the JavaScript ecosystem.

By providing a high-volume, language-specific corpus, JavaScript-Code-Large enables systematic experimentation in JavaScript-focused model training, domain adaptation, and downstream code understanding tasks.


JavaScript-Code-Large addresses the need for a dedicated JavaScript-only dataset at substantial scale, enabling focused research across frontend, backend, and full-stack JavaScript environments.
.

**1. Dataset Composition**

Programming Language: JavaScript

File Count: 5M+ JavaScript files

File Format: .jsonl


Content Types

The dataset includes a wide variety of JavaScript constructs and paradigms, such as:

- Functions (declarations, expressions, arrow functions)

- Classes and prototypes

- Modules (CommonJS and ES Modules)

- Asynchronous patterns (async/await, Promises, callbacks)

- Event-driven code

- Closures and higher-order functions

- Functional programming constructs

- DOM manipulation code

- Node.js backend logic

- Frontend framework components

- JSDoc comments

- Error handling patterns

- Modern ES6+ features


**2. Intended Research Applications**

2.1 Pretraining

- Training JavaScript code foundation models from scratch

- Continued pretraining of existing LLMs

- JavaScript-specialized language modeling

- Tokenizer training for JS ecosystems


2.2 Fine-Tuning and Adaptation

- Code completion systems

- Intelligent IDE assistants

- Automated refactoring tools

- Conversational programming agents

- JavaScript-specific copilots


2.3 Code Intelligence Tasks

- Code summarization

- Code-to-text generation

- Documentation generation

- Bug detection

- Vulnerability detection

- Clone detection

- Code similarity modeling

- Minified-to-readable code transformation

- Static and structural analysis


2.4 Software Engineering Research

- Empirical studies of JavaScript coding patterns

- Analysis of async and event-driven architectures

- Framework usage studies

- Dependency modeling

- AST-based experiments

- Cross-version JavaScript evolution analysis


**3. Relationship to [Java-Code-Large](https://huggingface.co/datasets/ajibawa-2023/Java-Code-Large)**

JavaScript-Code-Large complements **Java-Code-Large**, enabling comparative research between:

- Statically typed vs dynamically typed languages

- Class-based vs prototype-based paradigms

- Backend vs frontend dominant ecosystems

- JVM vs Node.js environments

Together, these datasets support cross-language transfer learning and controlled specialization studies.


Thanks to open source community for all the guidance & support!!