mmiakashs's picture
Release dataset generator
165da3c verified
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: CC-BY-NC-4.0
from typing import List, Dict, Optional
from pydantic import BaseModel, Field
class SourceDocument(BaseModel):
"""Represents a source document used in splicing."""
doc_type: str = Field(..., description="Document category/type")
doc_name: str = Field(..., description="Source document identifier")
pages: List[int] = Field(..., description="Page numbers used from this document")
class GroundTruthPage(BaseModel):
"""Ground truth for a single page in spliced document."""
page_num: int = Field(..., ge=1, description="Page number in spliced document")
doc_type: str = Field(..., description="Document category/type")
source_doc: str = Field(..., description="Source document identifier")
source_page: int = Field(..., ge=1, description="Page number in source document")
class SplicedDocument(BaseModel):
"""Represents a spliced benchmark document."""
spliced_doc_id: str = Field(..., description="Unique identifier for spliced document")
source_documents: List[SourceDocument] = Field(..., description="Source documents used")
ground_truth: List[GroundTruthPage] = Field(..., description="Ground truth page mappings")
total_pages: int = Field(..., gt=0, description="Total pages in spliced document")
class BenchmarkSet(BaseModel):
"""Collection of spliced documents for a benchmark."""
benchmark_name: str = Field(..., description="Benchmark identifier")
strategy: str = Field(..., description="Shuffling strategy used")
split: str = Field(..., description="Dataset split: train, test, or validation")
created_at: str = Field(..., description="Creation timestamp")
documents: List[SplicedDocument] = Field(..., description="Spliced documents")
statistics: Dict[str, int] = Field(default_factory=dict, description="Benchmark statistics")
class DocumentAsset(BaseModel):
"""Represents a loaded document asset."""
doc_type: str = Field(..., description="Document category/type")
doc_name: str = Field(..., description="Document identifier")
filename: str = Field(..., description="PDF filename")
page_count: int = Field(..., gt=0, description="Number of pages")
pages: List['PageAsset'] = Field(default_factory=list, description="Page assets")
class PageAsset(BaseModel):
"""Represents a single page asset."""
page_num: int = Field(..., ge=1, description="Page number")
image_path: str = Field(..., description="Path to page image")
text_path: str = Field(..., description="Path to OCR text")
text_content: Optional[str] = Field(None, description="Loaded text content")