# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: CC-BY-NC-4.0 """ Create Benchmarks from Assets Generates document splitting benchmarks from structured assets. Usage: python main.py --strategy multi_category_concat python main.py --strategy single_category_concat --num-docs-train 500 """ import argparse from pathlib import Path from loguru import logger from services.asset_loader import AssetLoader from services.split_manager import SplitManager from services.benchmark_generator import BenchmarkGenerator from services.benchmark_writer import BenchmarkWriter from services.shuffle_strategies import get_strategy, STRATEGIES def main(): parser = argparse.ArgumentParser(description='Create benchmarks from assets') # Paths parser.add_argument('--assets-path', default='data/assets', help='Path to assets from create_assets') parser.add_argument('--output-path', default='data/benchmarks', help='Output path for benchmarks') parser.add_argument('--split-mapping', default='data/metadata/split_mapping.json', help='Path to split mapping JSON (created if not exists)') # Strategy parser.add_argument('--strategy', choices=list(STRATEGIES.keys()) + ['all'], default='all', help='Shuffle strategy to use (default: all strategies)') # Split configuration parser.add_argument('--num-docs-train', type=int, default=800, help='Number of spliced documents for training') parser.add_argument('--num-docs-test', type=int, default=500, help='Number of spliced documents for testing') parser.add_argument('--num-docs-val', type=int, default=200, help='Number of spliced documents for validation') # Strategy parameters parser.add_argument('--size', choices=['small', 'large'], default='small', help='Benchmark size: small (5-20 pages) or large (20-500 pages)') parser.add_argument('--random-seed', type=int, default=42, help='Random seed for reproducibility') args = parser.parse_args() # Set page ranges based on size if args.size == 'small': min_pages, max_pages = 5, 20 else: # large min_pages, max_pages = 20, 500 # Determine which strategies to run if args.strategy == 'all': strategies_to_run = list(STRATEGIES.keys()) logger.info(f"Creating benchmarks for all strategies: {strategies_to_run}") else: strategies_to_run = [args.strategy] logger.info(f"Creating benchmark with strategy: {args.strategy}") logger.info(f"Size: {args.size} ({min_pages}-{max_pages} pages)") # Load assets loader = AssetLoader(assets_path=args.assets_path) documents_by_type = loader.load_all_documents() if not documents_by_type: logger.error("No documents loaded. Check assets path.") return # Create or load split split_manager = SplitManager(random_seed=args.random_seed) if args.split_mapping and Path(args.split_mapping).exists(): logger.info(f"Loading existing split from {args.split_mapping}") splits = split_manager.load_split(args.split_mapping) else: logger.info("Creating new split") splits = split_manager.create_split(documents_by_type) # Save split mapping to metadata folder split_path = Path(args.split_mapping) split_path.parent.mkdir(parents=True, exist_ok=True) split_manager.save_split(splits, str(split_path)) # Run for each strategy for strategy_name in strategies_to_run: logger.info(f"\n{'='*60}") logger.info(f"Processing strategy: {strategy_name}") logger.info(f"{'='*60}\n") # Initialize strategy strategy = get_strategy( strategy_name, min_pages=min_pages, max_pages=max_pages, random_seed=args.random_seed ) # Initialize generator and writer generator = BenchmarkGenerator(strategy=strategy) writer = BenchmarkWriter( output_base_path=str(Path(args.output_path) / strategy_name / args.size), assets_path=args.assets_path ) # Generate benchmarks for each split split_configs = [ ('train', args.num_docs_train), ('test', args.num_docs_test), ('validation', args.num_docs_val) ] for split_name, num_docs in split_configs: if num_docs <= 0: logger.info(f"Skipping {split_name} (num_docs=0)") continue logger.info(f"Generating {split_name} benchmark...") benchmark_set = generator.generate_for_split( documents_by_type=documents_by_type, doc_names_for_split=splits[split_name], num_spliced_docs=num_docs, split_name=split_name, benchmark_name=strategy_name ) writer.save_benchmark_set(benchmark_set, split_name) logger.info(f"Completed {split_name}: {benchmark_set.statistics}") logger.info("\n" + "="*60) logger.info("All benchmark creation complete!") logger.info("="*60) if __name__ == '__main__': main()