# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: CC-BY-NC-4.0 import json import random from pathlib import Path from typing import Dict, List from datetime import datetime from loguru import logger from models import DocumentAsset class SplitManager: """Manages train/test/validation splits for documents.""" def __init__( self, train_ratio: float = 0.6, test_ratio: float = 0.25, validation_ratio: float = 0.15, random_seed: int = 42 ): self.train_ratio = train_ratio self.test_ratio = test_ratio self.validation_ratio = validation_ratio self.random_seed = random_seed if abs(train_ratio + test_ratio + validation_ratio - 1.0) > 0.001: raise ValueError("Split ratios must sum to 1.0") def create_split( self, documents_by_type: Dict[str, List[DocumentAsset]] ) -> Dict[str, Dict[str, List[str]]]: """Create stratified train/test/validation split. Returns: Dict with structure: {split_name: {doc_type: [doc_names]}} """ random.seed(self.random_seed) splits = { 'train': {}, 'test': {}, 'validation': {} } for doc_type, documents in documents_by_type.items(): doc_names = [doc.doc_name for doc in documents] random.shuffle(doc_names) total = len(doc_names) train_end = int(total * self.train_ratio) test_end = train_end + int(total * self.test_ratio) splits['train'][doc_type] = doc_names[:train_end] splits['test'][doc_type] = doc_names[train_end:test_end] splits['validation'][doc_type] = doc_names[test_end:] logger.info(f"Created split: train={self._count_docs(splits['train'])}, " f"test={self._count_docs(splits['test'])}, " f"val={self._count_docs(splits['validation'])}") return splits def save_split(self, splits: Dict, output_path: str): """Save split mapping to JSON.""" Path(output_path).parent.mkdir(parents=True, exist_ok=True) split_data = { 'created_at': datetime.now().isoformat(), 'split_config': { 'train_ratio': self.train_ratio, 'test_ratio': self.test_ratio, 'validation_ratio': self.validation_ratio, 'random_seed': self.random_seed, 'stratified': True }, 'splits': splits, 'statistics': { 'train': self._get_statistics(splits['train']), 'test': self._get_statistics(splits['test']), 'validation': self._get_statistics(splits['validation']) } } with open(output_path, 'w') as f: json.dump(split_data, f, indent=2) logger.info(f"Saved split mapping to {output_path}") def load_split(self, split_path: str) -> Dict[str, Dict[str, List[str]]]: """Load split mapping from JSON.""" with open(split_path, 'r') as f: split_data = json.load(f) logger.info(f"Loaded split mapping from {split_path}") return split_data['splits'] def _count_docs(self, split: Dict[str, List[str]]) -> int: """Count total documents in a split.""" return sum(len(docs) for docs in split.values()) def _get_statistics(self, split: Dict[str, List[str]]) -> Dict[str, int]: """Get statistics for a split.""" stats = {'total': self._count_docs(split)} for doc_type, docs in split.items(): stats[doc_type] = len(docs) return stats