testmodel / handler.py
iliaspap's picture
Update handler.py
eb0605e
# handler.py
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# check for GPU
device = 0 if torch.cuda.is_available() else -1
# from PIL import Image
# from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
# from torchvision.transforms.functional import InterpolationMode
# from pyrovision.models import model_from_hf_hub
# model = model_from_hf_hub("pyronear/mobilenet_v3_small").eval()
# img = Image.open(path_to_an_image).convert("RGB")
# # Preprocessing
# config = model.default_cfg
# transform = Compose([
# Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
# PILToTensor(),
# ConvertImageDtype(torch.float32),
# Normalize(config['mean'], config['std'])
# ])
# input_tensor = transform(img).unsqueeze(0)
# # Inference
# with torch.inference_mode():
# output = model(input_tensor)
# probs = output.squeeze(0).softmax(dim=0)
# multi-model list
multi_model_list = [
{"model_id": "distilbert-base-uncased-finetuned-sst-2-english", "task": "text-classification"},
{"model_id": "Helsinki-NLP/opus-mt-en-de", "task": "translation"},
{"model_id": "facebook/bart-large-cnn", "task": "summarization"},
{"model_id": "dslim/bert-base-NER", "task": "token-classification"},
{"model_id": "textattack/bert-base-uncased-ag-news", "task": "text-classification"},
]
class EndpointHandler():
def __init__(self, path=""):
self.multi_model={}
# load all the models onto device
for model in multi_model_list:
self.multi_model[model["model_id"]] = pipeline(model["task"], model=model["model_id"], device=device)
def __call__(self, data):
# deserialize incomin request
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
model_id = data.pop("model_id", None)
# check if model_id is in the list of models
if model_id is None or model_id not in self.multi_model:
raise ValueError(f"model_id: {model_id} is not valid. Available models are: {list(self.multi_model.keys())}")
# pass inputs with all kwargs in data
prediction = {'output':'test'}
# if parameters is not None:
# prediction = self.multi_model[model_id](inputs, **parameters)
# else:
# prediction = self.multi_model[model_id](inputs)
# # postprocess the prediction
return prediction