|
|
from typing import Any, Literal |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import Qwen2_5_VLVisionConfig |
|
|
|
|
|
|
|
|
class Helium1CASAConfig(PretrainedConfig): |
|
|
r""" |
|
|
Helium1 Config augmented with CASA options |
|
|
|
|
|
|
|
|
Args: |
|
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
|
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the |
|
|
`inputs_ids` passed when calling [`Helium1Model`] |
|
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
|
Dimension of the hidden representations. |
|
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
|
Dimension of the MLP representations. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
|
Number of hidden layers in the Transformer decoder. |
|
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
|
num_key_value_heads (`int`, *optional*): |
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
|
`num_attention_heads`. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
|
The non-linear activation function (function or string) in the decoder. |
|
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
|
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, |
|
|
Llama 2 up to 4096, CodeLlama up to 16384. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
|
The epsilon used by the rms normalization layers. |
|
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
|
relevant if `config.is_decoder=True`. |
|
|
pad_token_id (`int`, *optional*): |
|
|
Padding token id. |
|
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
|
Beginning of stream token id. |
|
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
|
End of stream token id. |
|
|
pretraining_tp (`int`, *optional*, defaults to 1): |
|
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this |
|
|
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to |
|
|
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining |
|
|
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). |
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
|
Whether to tie weight embeddings |
|
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
|
The base period of the RoPE embeddings. |
|
|
rope_scaling (`Dict`, *optional*): |
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
|
accordingly. |
|
|
Expected contents: |
|
|
`rope_type` (`str`): |
|
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', |
|
|
'llama3'], with 'default' being the original RoPE implementation. |
|
|
`factor` (`float`, *optional*): |
|
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
|
original maximum pre-trained length. |
|
|
`original_max_position_embeddings` (`int`, *optional*): |
|
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during |
|
|
pretraining. |
|
|
`attention_factor` (`float`, *optional*): |
|
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
|
`factor` field to infer the suggested value. |
|
|
`beta_fast` (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 32. |
|
|
`beta_slow` (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 1. |
|
|
`short_factor` (`List[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
`long_factor` (`List[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
`low_freq_factor` (`float`, *optional*): |
|
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE |
|
|
`high_freq_factor` (`float`, *optional*): |
|
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE |
|
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
mlp_bias (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. |
|
|
head_dim (`int`, *optional*): |
|
|
The attention head dimension. If None, it will default to hidden_size // num_attention_heads |
|
|
|
|
|
""" |
|
|
|
|
|
model_type = "helium1_casa" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
base_model_pp_plan = { |
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size: int = 32000, |
|
|
hidden_size: int = 4096, |
|
|
intermediate_size: int = 11008, |
|
|
num_hidden_layers: int = 32, |
|
|
num_attention_heads: int = 32, |
|
|
num_key_value_heads: None | int = None, |
|
|
head_dim: None | int = None, |
|
|
hidden_act: str = "silu", |
|
|
attention_dropout: float = 0.0, |
|
|
max_position_embeddings: int = 2048, |
|
|
initializer_range: float = 0.02, |
|
|
rms_norm_eps: float = 1e-6, |
|
|
use_cache: bool = True, |
|
|
tie_word_embeddings: bool = False, |
|
|
rope_theta: float = 10000.0, |
|
|
pad_token_id: int = 3, |
|
|
eos_token_id: int = 2, |
|
|
bos_token_id: int = 1, |
|
|
pretraining_tp: int = 1, |
|
|
rope_scaling: None | dict = None, |
|
|
attention_bias: bool = False, |
|
|
mlp_bias: bool = False, |
|
|
|
|
|
|
|
|
xa_layers: None | tuple = None, |
|
|
xa_order: Literal["ca_first", "parallel", "instead"] = "ca_first", |
|
|
xa_norm_on_images: bool = False, |
|
|
xa_update_image_embeds: bool = False, |
|
|
mask_squash_blockwise: bool = False, |
|
|
|
|
|
casa_attention: bool = False, |
|
|
casa_delta_w: bool = False, |
|
|
casa_windows: Literal["batch", "squashed", "images", "turn_based"] = "batch", |
|
|
casa_use_asymetric_qkv: bool = True, |
|
|
xa_custom_norm: bool = False, |
|
|
|
|
|
vision_config: dict[str, Any] | None = None, |
|
|
**kwargs: Any, |
|
|
): |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.head_dim = ( |
|
|
head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads |
|
|
) |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.pretraining_tp = pretraining_tp |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_bias = attention_bias |
|
|
self.attention_dropout = attention_dropout |
|
|
self.mlp_bias = mlp_bias |
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
rope_config_validation(self) |
|
|
|
|
|
self.head_dim = self.hidden_size // self.num_attention_heads |
|
|
self.xa_layers = xa_layers |
|
|
self.xa_order: Literal["ca_first", "parallel", "instead"] = xa_order |
|
|
self.xa_norm_on_images = xa_norm_on_images |
|
|
self.xa_update_image_embeds = xa_update_image_embeds |
|
|
self.mask_squash_blockwise = mask_squash_blockwise |
|
|
|
|
|
self.casa_attention = casa_attention |
|
|
self.casa_delta_w = casa_delta_w |
|
|
self.casa_windows: Literal["batch", "squashed", "images", "turn_based"] = casa_windows |
|
|
self.casa_use_asymetric_qkv = casa_use_asymetric_qkv |
|
|
self.xa_custom_norm = xa_custom_norm |
|
|
|
|
|
if vision_config is None: |
|
|
vision_config = dict() |
|
|
self.vision_config = Qwen2_5_VLVisionConfig(**vision_config) |
|
|
self.vision_config.temporal_patch_size = 1 |
|
|
self.vision_config.image_mean = [0.48145466, 0.4578275, 0.40821073] |
|
|
self.vision_config.image_std = [0.26862954, 0.26130258, 0.27577711] |
|
|
self.vision_config.out_dim = 2048 |
|
|
|
|
|
self.pre_image_tokens = [] |
|
|
self.post_image_tokens = [] |
|
|
|
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import argparse |
|
|
from pathlib import Path |
|
|
|
|
|
import rich |
|
|
import yaml |
|
|
from transformers.models.auto.configuration_auto import AutoConfig |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--out_dir", type=str, default="./saved_config/") |
|
|
parser.add_argument( |
|
|
"--ckpt_path", |
|
|
type=str, |
|
|
default="/lustre/scwpod02/client/kyutai/juliette/experiments/finext_casa_896_xtxt_up_b20_64gpu/fdf76e6774", |
|
|
) |
|
|
args = parser.parse_args() |
|
|
path = Path(args.ckpt_path) / "kyuteye_config.yml" |
|
|
|
|
|
helium_config = AutoConfig.from_pretrained("kyutai/helium-1-2b") |
|
|
vision_config = AutoConfig.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct").vision_config |
|
|
|
|
|
|
|
|
config = Helium1CASAConfig( |
|
|
**helium_config.to_dict(), |
|
|
vision_config=vision_config.to_dict(), |
|
|
) |
|
|
|
|
|
with open(path) as stream: |
|
|
kconfig = yaml.safe_load(stream) |
|
|
|
|
|
|
|
|
for key in set(kconfig.keys()).intersection(set(config.to_dict().keys())): |
|
|
rich.print(f"Overwriting [bold green]{key:>50s}[/]: [bold red]{kconfig[key]}") |
|
|
setattr(config, key, kconfig[key]) |
|
|
|
|
|
print("Configuration successfully loaded.") |
|
|
|
|
|
config.save_pretrained(args.out_dir) |
|
|
print(f"Configuration saved to {args.out_dir}/config.json") |
|
|
|