Image-Text-to-Text
Transformers
Safetensors
English
CASA_Helium1_VL_2B
custom_code
CASA-Helium1-VL-2B / configuration_helium1_casa.py
ameroyer's picture
Super-squash branch 'main' using huggingface_hub
fc8600b verified
from typing import Any, Literal
from transformers.configuration_utils import PretrainedConfig
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import Qwen2_5_VLVisionConfig
class Helium1CASAConfig(PretrainedConfig):
r"""
Helium1 Config augmented with CASA options
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Helium1Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
Llama 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
"""
model_type = "helium1_casa"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Helium1Model`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = { # pyright: ignore[reportAssignmentType]
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 4096,
intermediate_size: int = 11008,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: None | int = None,
head_dim: None | int = None,
hidden_act: str = "silu",
attention_dropout: float = 0.0,
max_position_embeddings: int = 2048,
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
tie_word_embeddings: bool = False,
rope_theta: float = 10000.0,
pad_token_id: int = 3,
eos_token_id: int = 2,
bos_token_id: int = 1,
pretraining_tp: int = 1,
rope_scaling: None | dict = None,
attention_bias: bool = False,
mlp_bias: bool = False,
# Our fusion mechanisms
# Common to all fusion mechanisms
xa_layers: None | tuple = None,
xa_order: Literal["ca_first", "parallel", "instead"] = "ca_first",
xa_norm_on_images: bool = False,
xa_update_image_embeds: bool = False,
mask_squash_blockwise: bool = False,
# CASA
casa_attention: bool = False,
casa_delta_w: bool = False,
casa_windows: Literal["batch", "squashed", "images", "turn_based"] = "batch",
casa_use_asymetric_qkv: bool = True,
xa_custom_norm: bool = False,
# Qwen2.5-VL vision config
vision_config: dict[str, Any] | None = None,
**kwargs: Any,
):
from transformers.modeling_rope_utils import rope_config_validation
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = (
head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
)
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.head_dim = self.hidden_size // self.num_attention_heads
self.xa_layers = xa_layers
self.xa_order: Literal["ca_first", "parallel", "instead"] = xa_order
self.xa_norm_on_images = xa_norm_on_images
self.xa_update_image_embeds = xa_update_image_embeds
self.mask_squash_blockwise = mask_squash_blockwise
# CASA config
self.casa_attention = casa_attention
self.casa_delta_w = casa_delta_w
self.casa_windows: Literal["batch", "squashed", "images", "turn_based"] = casa_windows
self.casa_use_asymetric_qkv = casa_use_asymetric_qkv
self.xa_custom_norm = xa_custom_norm
if vision_config is None:
vision_config = dict()
self.vision_config = Qwen2_5_VLVisionConfig(**vision_config)
self.vision_config.temporal_patch_size = 1
self.vision_config.image_mean = [0.48145466, 0.4578275, 0.40821073]
self.vision_config.image_std = [0.26862954, 0.26130258, 0.27577711]
self.vision_config.out_dim = 2048
self.pre_image_tokens = []
self.post_image_tokens = []
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
if __name__ == "__main__":
import argparse
from pathlib import Path
import rich
import yaml
from transformers.models.auto.configuration_auto import AutoConfig
parser = argparse.ArgumentParser()
parser.add_argument("--out_dir", type=str, default="./saved_config/")
parser.add_argument(
"--ckpt_path",
type=str,
default="/lustre/scwpod02/client/kyutai/juliette/experiments/finext_casa_896_xtxt_up_b20_64gpu/fdf76e6774",
)
args = parser.parse_args()
path = Path(args.ckpt_path) / "kyuteye_config.yml"
helium_config = AutoConfig.from_pretrained("kyutai/helium-1-2b")
vision_config = AutoConfig.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct").vision_config
# 3) Create YOUR config by merging both
config = Helium1CASAConfig(
**helium_config.to_dict(), # all helium parameters
vision_config=vision_config.to_dict(), # override or add vision_config
)
with open(path) as stream:
kconfig = yaml.safe_load(stream)
# print keys that are in kconfig and in config
for key in set(kconfig.keys()).intersection(set(config.to_dict().keys())):
rich.print(f"Overwriting [bold green]{key:>50s}[/]: [bold red]{kconfig[key]}")
setattr(config, key, kconfig[key])
# TODO: handle casa_own_norm -> xa_custom_norm
print("Configuration successfully loaded.")
# Save config to json
config.save_pretrained(args.out_dir)
print(f"Configuration saved to {args.out_dir}/config.json")