# ADAPTED FROM https://github.com/huggingface/transformers/blob/main/src/transformers/models/helium/modeling_helium.py # GIT HASH 1b222903c3e1cfd9492d75e4b2548aa8bd458674 import logging import math from dataclasses import dataclass from functools import partial from typing import Any, Callable, Literal, Optional from typing import cast as type_cast import torch from torch import nn from transformers import ( ROPE_INIT_FUNCTIONS, # pyright: ignore[reportPrivateImportUsage] dynamic_rope_update, # pyright: ignore[reportPrivateImportUsage] ) from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.configuration_utils import PretrainedConfig from transformers.generation.utils import GenerationMixin from transformers.loss.loss_utils import ForCausalLMLoss from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils.generic import LossKwargs, can_return_tuple from transformers.utils.import_utils import is_torch_flex_attn_available from .casa_attention import CASAAttention, CASAAttentionHandler, insert_image_tokens from .configuration_helium1_casa import Helium1CASAConfig logger = logging.getLogger(__name__) if is_torch_flex_attn_available(): from transformers.integrations.flex_attention import make_flex_block_causal_mask def remove_image_tokens( inputs_embeds: torch.Tensor, image_tokens_mask: torch.Tensor, ) -> torch.Tensor: """Remove the image tokens from inputs_embeds as indicated by image_tokens_mask :param inputs_embeds: Tokens of shape (Batch, Seqlen, Dims) containing image tokens :param image_tokens_mask: 1-0 mask indicating where image tokens are; (Batch, Seqlen) :return: Tokens tensor of shape (Batch, S' < Seqlen, Dims) """ image_seq_lengths = torch.sum(image_tokens_mask, dim=1)[:, 0] image_seq_length = int(image_seq_lengths[0].item()) assert torch.all(image_seq_lengths == image_seq_length) new_shape = ( inputs_embeds.shape[0], inputs_embeds.shape[1] - image_seq_length, inputs_embeds.shape[-1], ) tokens = torch.masked_select( inputs_embeds, torch.logical_not(image_tokens_mask).expand((-1, -1, inputs_embeds.shape[-1])), ) return tokens.reshape(new_shape) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand( batch, num_key_value_heads, n_rep, slen, head_dim ) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: "HeliumAttention", query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: None | torch.Tensor, scaling: float, dropout: float = 0.0, **kwargs: Any, ): del kwargs # unused key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights # Different Attention Classes class HeliumAttention(torch.nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Helium1CASAConfig, layer_idx: None | int = None): super().__init__() self.config = config assert layer_idx is not None self.layer_idx: int = layer_idx self.apply_rotary_fn = ApplyRotaryPosEmbHelium1() self.head_dim = getattr( config, "head_dim", config.hidden_size // config.num_attention_heads ) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = 1 / math.sqrt(self.head_dim) self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias, ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias, ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias, ) self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: None | torch.Tensor, past_key_values: None | Cache = None, cache_position: None | torch.LongTensor = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, torch.Tensor | None]: # del (cache_position, past_key_value) # we use our own generate/caching bs, seq_len, _ = hidden_states.shape # Get QKV hidden_shape = (bs, seq_len, -1, self.head_dim) # Embed Queries # Shape: (batch_size, num_heads, seq_len, head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) num_queries = query_states.shape[2] key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) # Applies rotation cos, sin = position_embeddings query_states, key_states = self.apply_rotary_fn( query_states, key_states, cos, sin, num_queries=num_queries ) assert key_states is not None and query_states is not None attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get( "output_attentions", False ): print( "`torch.nn.functional.scaled_dot_product_attention` does not support" " `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument"\ " `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_values.update( key_states, value_states, self.layer_idx, cache_kwargs ) attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(bs, num_queries, -1).contiguous() attn_output = self.o_proj(attn_output) assert isinstance(attn_output, torch.Tensor) return attn_output, attn_weights class ApplyRotaryPosEmbHelium1: @staticmethod def rotate_half(x: torch.Tensor) -> torch.Tensor: """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) @staticmethod def __call__( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor | None = None, unsqueeze_dim: int = 1, num_queries: int | None = None, ) -> tuple[torch.Tensor, torch.Tensor]: """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ del position_ids cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) if num_queries is None: offset = 0 else: offset = -num_queries q_embed = (q * cos[:, :, offset:]) + ( ApplyRotaryPosEmbHelium1.rotate_half(q) * sin[:, :, offset:] ) k_embed = (k * cos) + (ApplyRotaryPosEmbHelium1.rotate_half(k) * sin) return q_embed, k_embed class HeliumRotaryEmbedding(nn.Module): def __init__(self, config: Helium1CASAConfig, device: None | torch.device | str = None): super().__init__() if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config assert self.rope_type in ROPE_INIT_FUNCTIONS, ( f"Invalid rope type {self.rope_type}. Supported types are: {list(ROPE_INIT_FUNCTIONS.keys())}" ) self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(config, device=device) self.inv_freq: torch.Tensor # only defined for typing self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward( self, x: torch.Tensor, position_ids: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor]: inv_freq_expanded = ( self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) ) position_ids_expanded = position_ids[:, None, :].float() device_type = ( x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" ) with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class Helium1CASAAttention(CASAAttention): """A CASA Attention layer compatible with Qwen""" def __init__( self, config: Helium1CASAConfig, layer_idx: int | None, self_attn: torch.nn.Module | None = None, input_layernorm_fn: Callable[[torch.Tensor], torch.Tensor] | None = None, ): # Only adding this init for typing purposes for the config super().__init__(config, layer_idx, self_attn, input_layernorm_fn) # pyright: ignore[reportArgumentType] @staticmethod def rotate_half(x: torch.Tensor) -> torch.Tensor: """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_position_embeddings( self, key: Literal["q", "kv"], x: torch.Tensor, # (batch, seq_len, num_heads, head_dim) casa_handler: CASAAttentionHandler | None, num_queries: int = 0, unsqueeze_dim: int = 1, ) -> torch.Tensor: # (batch, seq_len, num_heads, head_dim) """Apply position embeddings to query and key states""" if casa_handler is not None: posemb = casa_handler.get_position_embedding(key, num_queries=num_queries) if posemb is not None: x = x.transpose(1, 2).to(torch.float32) x = (x * posemb[0].unsqueeze(dim=unsqueeze_dim)) + ( self.rotate_half(x) * posemb[1].unsqueeze(dim=unsqueeze_dim) ) return x.transpose(1, 2) return x def init_from_config_proj( self, key: Literal["q", "o", "k", "v"], config: PretrainedConfig ) -> torch.nn.Linear: """Initialize the Linear proj in this module""" num_heads = config.num_key_value_heads if key in {"k", "v"} else config.num_attention_heads return torch.nn.Linear( config.hidden_size, num_heads * config.head_dim, bias=config.attention_bias if key != "o" else False, ) # NORMALISATION LAYER def __rms_norm_forward__( hidden_states: torch.Tensor, weight: torch.Tensor, variance_epsilon: float = 1e-6 ) -> torch.Tensor: input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon) return weight * hidden_states.to(input_dtype) class Helium1RMSNorm(nn.Module): def __init__(self, hidden_size: int, eps: float = 1e-6) -> None: """ Helium1RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return __rms_norm_forward__(hidden_states, self.weight, self.variance_epsilon) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" def delta_w_factory_rms_norm( org_lin: Helium1RMSNorm, new_lin: Helium1RMSNorm ) -> Callable[[torch.Tensor], torch.Tensor]: """Factory for building rms norm where the weights are the sum of two layers' weights""" def _delta_w_fwd(input: torch.Tensor) -> torch.Tensor: nonlocal org_lin, new_lin return __rms_norm_forward__( input, org_lin.weight + new_lin.weight, new_lin.variance_epsilon ) return _delta_w_fwd # FULL CONNECTED LAYER class HeliumMLP(nn.Module): def __init__(self, config: Helium1CASAConfig) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x: torch.Tensor) -> torch.Tensor: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class HeliumDecoderLayer(nn.Module): def __init__(self, config: Helium1CASAConfig, layer_idx: None | int = None): super().__init__() self.hidden_size = config.hidden_size self.config = config self.mlp = HeliumMLP(config) self.input_layernorm = Helium1RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Helium1RMSNorm(config.hidden_size, eps=config.rms_norm_eps) # Self-attention self.self_attn = HeliumAttention(config=config, layer_idx=layer_idx) # Setup norm for fusion mechanisms; Note that this norm is on the text tokens is_xa_layer = layer_idx is None or not config.xa_layers or layer_idx in config.xa_layers self.norm_cross: None | Helium1RMSNorm = None self.override_norm_cross: Callable[[torch.Tensor], torch.Tensor] | None = None if is_xa_layer and config.casa_attention: # Custom normalization layer for the extra fusion module if self.config.xa_custom_norm: self.norm_cross = Helium1RMSNorm(config.hidden_size) if config.casa_delta_w: self.override_norm_cross = delta_w_factory_rms_norm( self.input_layernorm, self.norm_cross ) with torch.no_grad(): torch.nn.init.ones_(self.norm_cross.weight) # Setup additional norm for images tokens which is set in each individual mechansims norm_on_images_fn = ( None if not self.config.xa_norm_on_images else self.override_norm_cross if self.override_norm_cross is not None else self.norm_cross.forward if self.norm_cross is not None else self.input_layernorm.forward ) # CASA self.casa_attn: Helium1CASAAttention | None = None if config.casa_attention and is_xa_layer: self.casa_attn = Helium1CASAAttention( config, layer_idx, self_attn=self.self_attn, input_layernorm_fn=norm_on_images_fn ) def forward( self, hidden_states: torch.Tensor, attention_mask: None | torch.Tensor = None, position_ids: None | torch.LongTensor = None, past_key_values: None | Cache = None, output_attentions: None | bool = False, use_cache: None | bool = False, cache_position: None | torch.LongTensor = None, position_embeddings: None | tuple[torch.Tensor, torch.Tensor] = None, # necessary, but kept here for BC # CASA casa_handler: CASAAttentionHandler | None = None, cu_seqlens: torch.Tensor | None = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, torch.Tensor] | tuple[torch.Tensor]: # Image fusion mechanisms apply_ca = self.casa_attn is not None ca_update: torch.Tensor | None = None if ( self.config.xa_order in { "parallel", "ca_first", "instead", } and apply_ca ): # Apply layer norm assert self.norm_cross is not None ca_input = ( self.override_norm_cross if self.override_norm_cross is not None else self.norm_cross )(hidden_states) # CASA if self.casa_attn is not None: ca_update = self.casa_attn(ca_input, casa_handler=casa_handler) # If we're here, it's because we had proper inputs (no text-only samples) # so the output better be not None ! if ca_update is not None: # `instead`: directly return the output of the CA module as residual if self.config.xa_order == "instead": outputs = (hidden_states + ca_update,) if output_attentions: outputs += ( torch.zeros((), device=ca_update.device, dtype=ca_update.dtype), ) return outputs # `ca_first`: update then continue with normal self-attention if self.config.xa_order == "ca_first": hidden_states = hidden_states + ca_update ca_update = None # Self Attention with initial input layer norm residual = hidden_states hidden_states, self_attn_weights = self.self_attn( hidden_states=self.input_layernorm(hidden_states), attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, cu_seqlens=cu_seqlens, **kwargs, ) hidden_states = residual + hidden_states # parallel - residual update if self.config.xa_order == "parallel" and apply_ca and ca_update is not None: hidden_states = hidden_states + ca_update # Fully Connected layer residual = hidden_states # MLP updates for image embeddings if ( self.config.xa_update_image_embeds and self.casa_attn is not None and casa_handler is not None and casa_handler.image_embeds is not None ): # Text flattening hs = self.post_attention_layernorm(hidden_states).reshape(-1, hidden_states.shape[-1]) # Image flattening img_seq_lengths = [_x.shape[0] for _x in casa_handler.image_embeds] img_residual = torch.cat(list(casa_handler.image_embeds), dim=0) update = self.mlp(torch.cat([hs, self.post_attention_layernorm(img_residual)], dim=0)) # update text hidden_states = hidden_states + update[: hs.shape[0]].reshape(hidden_states.shape) casa_handler.image_embeds = list( torch.split(img_residual + update[hs.shape[0] :], img_seq_lengths) ) else: hidden_states = self.mlp(self.post_attention_layernorm(hidden_states)) hidden_states = residual + hidden_states # Outputs outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs # FULL HELIUM MODEL @dataclass class CausalHeliumOutput(CausalLMOutputWithPast): attention_mask: Optional[torch.Tensor] = None num_image_tokens_log: Optional[torch.Tensor] = None num_text_tokens_log: Optional[torch.Tensor] = None class Helium1PreTrainedModel(PreTrainedModel): config_class = Helium1CASAConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["HeliumDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = True def _init_weights(self, module: torch.nn.Module) -> None: std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, Helium1RMSNorm): module.weight.data.fill_(1.0) class Helium1Model(Helium1PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] Args: config: Helium1CASAConfig """ def __init__(self, config: Helium1CASAConfig): Helium1PreTrainedModel.__init__(self, config) self.training: bool self._gradient_checkpointing_func: Callable self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [HeliumDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Helium1RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = HeliumRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value: nn.Module) -> None: self.embed_tokens = value @can_return_tuple def forward( self, input_ids: None | torch.LongTensor = None, attention_mask: None | torch.Tensor = None, position_ids: None | torch.Tensor = None, past_key_values: None | DynamicCache = None, inputs_embeds: None | torch.Tensor = None, use_cache: None | bool = None, output_attentions: None | bool = None, output_hidden_states: None | bool = None, cache_position: None | torch.Tensor = None, # Insertion image_tokens_mask: torch.Tensor | None = None, # CASA casa_handler: CASAAttentionHandler | None = None, cu_seqlens: torch.Tensor | None = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> BaseModelOutputWithPast: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = not self.training and ( use_cache if use_cache is not None else self.config.use_cache ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: print( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) assert inputs_embeds is not None if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = 0 if past_key_values is None else past_key_values._seen_tokens assert inputs_embeds is not None cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device, ) assert cache_position is not None if position_ids is None: position_ids = cache_position.unsqueeze(0) # Get attention mask causal_mask: None | torch.Tensor = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions, force_mask=False, ) # create position embeddings to be shared across the decoder layers hidden_states = inputs_embeds position_embeddings = self.rotary_emb(inputs_embeds, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer_idx, decoder_layer in enumerate( self.layers[: self.config.num_hidden_layers] ): is_xa_layer = not self.config.xa_layers or decoder_layer_idx in self.config.xa_layers if output_hidden_states is not None: if all_hidden_states is None: all_hidden_states = () all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( partial(decoder_layer.__call__, **flash_attn_kwargs), hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, casa_handler if is_xa_layer else None, cu_seqlens, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, casa_handler=casa_handler if is_xa_layer else None, cu_seqlens=cu_seqlens, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: if all_self_attns is None: all_self_attns = () all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: if all_hidden_states is None: all_hidden_states = () all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, # pyright: ignore[reportArgumentType] hidden_states=all_hidden_states, # pyright: ignore[reportArgumentType] attentions=all_self_attns, ) def _update_causal_mask( self, attention_mask: torch.Tensor | None, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: None | DynamicCache | Cache, output_attentions: bool = False, force_mask: bool = False, ) -> torch.Tensor | None: if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) # type: ignore return attention_mask assert attention_mask is None or isinstance(attention_mask, torch.Tensor) if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (force_mask or (attention_mask == 0.0).any()): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_compilable_cache = ( past_key_values.is_compileable if past_key_values is not None else False ) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions ): if not force_mask and AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype = input_tensor.dtype sequence_length = input_tensor.shape[1] if using_compilable_cache and past_key_values is not None: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). assert target_length is not None causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended( type_cast(torch.FloatTensor, causal_mask), min_dtype ) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor | None, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs: Any, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ del kwargs if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device, ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange( target_length, device=cache_position.device ) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[ :, None, None, : ].to(causal_mask.device) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... class Helium1ForCausalLM(Helium1PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config: Helium1CASAConfig, **kwargs: Any) -> None: del kwargs super().__init__(config) self.model: Helium1Model self.model = Helium1Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self._loss_function = ForCausalLMLoss def get_input_embeddings(self) -> nn.Module: return self.model.embed_tokens def set_input_embeddings(self, value: nn.Module) -> None: self.model.embed_tokens = value def get_output_embeddings(self) -> nn.Module: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Module) -> None: self.lm_head = new_embeddings def set_decoder(self, decoder: Helium1Model) -> None: self.model = decoder def get_decoder(self) -> Helium1Model: return self.model @can_return_tuple def forward( self, input_ids: None | torch.LongTensor = None, attention_mask: None | torch.Tensor = None, position_ids: None | torch.LongTensor = None, past_key_values: None | Cache = None, inputs_embeds: None | torch.Tensor = None, image_embeds: None | torch.Tensor | list[torch.Tensor] = None, image_embeds_insertion_points: None | list[torch.Tensor] = None, labels: None | torch.LongTensor = None, use_cache: None | bool = None, output_attentions: None | bool = None, output_hidden_states: None | bool = None, cache_position: None | torch.LongTensor = None, logits_to_keep: int | torch.Tensor = 0, # CASA casa_windows_info: None | dict = None, **kwargs: Unpack[KwargsForCausalLM], ) -> CausalHeliumOutput: r""" Helium1 augmented with CASA layers """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if input_ids is not None: assert inputs_embeds is None, ( "Need to provide only one of `input_ids` or `inputs_embeds`." ) inputs_embeds = self.model.embed_tokens(input_ids) assert inputs_embeds is not None # Setup image + text token fusion bs, og_seq_len, _ = inputs_embeds.shape image_tokens_mask: torch.Tensor | None = None casa_handler: CASAAttentionHandler | None = None num_image_tokens = -1 if image_embeds is not None: num_image_tokens = sum(_x.shape[0] for _x in image_embeds) assert image_embeds_insertion_points is not None, ( "Missing image embeddings insertion points" ) # B1. CASA layers: We need to init the shared Handler if self.model.config.casa_attention: casa_handler = CASAAttentionHandler( # for text tokens, we don't need the actual values inputs_embeds=torch.zeros_like(inputs_embeds), # for image embeddings, we put real inputs as this will be fixed image_embeds=image_embeds, image_embeds_insertion_points=image_embeds_insertion_points, # attention mask is only needed at inference / left padding attention_mask=None if self.training else attention_mask, rope_fn=self.model.rotary_emb, windows=self.model.config.casa_windows, use_asymetric_q_kv=self.model.config.casa_use_asymetric_qkv, # further params are fed to the funtion computing attention casa_windows_info=casa_windows_info, ) # B2. Direct image insertion else: inputs_embeds, _, attention_mask, image_tokens_mask = insert_image_tokens( inputs_embeds=inputs_embeds, image_embeds=image_embeds, image_embeds_insertion_points=image_embeds_insertion_points, attention_mask=attention_mask, padding_side="right" if self.training else "left", recover_batch_dim=True, ) del image_embeds del input_ids outputs: BaseModelOutputWithPast = self.model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, image_tokens_mask=image_tokens_mask, casa_handler=casa_handler, **kwargs, ) hidden_states = outputs.last_hidden_state assert hidden_states is not None if image_tokens_mask is not None: hidden_states = remove_image_tokens(hidden_states, image_tokens_mask) # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = ( slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep ) logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function( logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs, ) out = CausalHeliumOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, num_image_tokens_log=torch.tensor(num_image_tokens).to(logits.device).to(torch.float), num_text_tokens_log=torch.tensor(og_seq_len).to(logits.device).to(torch.float), ) return out