Commit
·
8a1bc81
verified
·
0
Parent(s):
Super-squash branch 'main' using huggingface_hub
Browse files- .gitattributes +35 -0
- Notice +2 -0
- README.md +13 -0
- __init__.py +0 -0
- casa_attention.py +1010 -0
- config.json +122 -0
- configuration_qwen2_5vl_casa.py +36 -0
- generation_config.json +6 -0
- image_encoder.py +57 -0
- language_qwen2_5vl_casa.py +276 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +1083 -0
- modeling_qwen2_5vl_casa.py +308 -0
- processing.py +505 -0
- processing_qwen2_5vl_casa.py +39 -0
- processor_config.json +13 -0
- tokenizer.json +0 -0
- tokenizer_config.json +207 -0
- utils.py +116 -0
- vocab.json +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Notice
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CASA-Qwen2_5-VL-3B-LiveCC is finetuned from Qwen2.5-VL-3B with additional CASA layers.
|
| 2 |
+
Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- chenjoya/Live-WhisperX-526K
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
base_model:
|
| 7 |
+
- Qwen/Qwen2.5-VL-3B-Instruct
|
| 8 |
+
pipeline_tag: video-text-to-text
|
| 9 |
+
license: cc-by-nc-sa-4.0
|
| 10 |
+
---
|
| 11 |
+
Please refer to the [main model card](https://huggingface.co/kyutai/CASA-Helium1-VL-2B) for more information and instructions to run.
|
| 12 |
+
|
| 13 |
+
This model page contains model weights for `CASA-Qwen2_5-VL-3B-LiveCC`, a Qwen-2.5VL model adapted from token insertion to cross-attention based using CASA layers and further finetuned on LiveCC for live video captioning. We provide model weights for other CASA models in the associated model collection.
|
__init__.py
ADDED
|
File without changes
|
casa_attention.py
ADDED
|
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""CASA layers"""
|
| 2 |
+
|
| 3 |
+
import bisect
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from itertools import accumulate
|
| 6 |
+
from typing import TYPE_CHECKING, Callable, Literal, Sequence, TypedDict, overload
|
| 7 |
+
from typing import cast as type_cast
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
|
| 12 |
+
from .utils import StreamingModule, StreamingState, delta_w_factory
|
| 13 |
+
|
| 14 |
+
if TYPE_CHECKING:
|
| 15 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
from flash_attn import flash_attn_varlen_func
|
| 19 |
+
except ImportError:
|
| 20 |
+
flash_attn_varlen_func = None # type: ignore
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
WindowsComputeKwargs = TypedDict(
|
| 24 |
+
"WindowsComputeKwargs",
|
| 25 |
+
{
|
| 26 |
+
"num_post_image_tokens": int,
|
| 27 |
+
"num_pre_image_tokens": int,
|
| 28 |
+
},
|
| 29 |
+
total=False,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def __split_n_merge__(
|
| 34 |
+
x: torch.Tensor,
|
| 35 |
+
sample_lengths: list[int],
|
| 36 |
+
padding_side: Literal["left", "right"] = "right",
|
| 37 |
+
pad_value: int | float | bool = 0,
|
| 38 |
+
) -> torch.Tensor:
|
| 39 |
+
max_sample_length = max(sample_lengths)
|
| 40 |
+
pad_tuple = tuple(0 for _ in range((x.ndim - 1) * 2))
|
| 41 |
+
return torch.stack(
|
| 42 |
+
[
|
| 43 |
+
torch.nn.functional.pad(
|
| 44 |
+
_x,
|
| 45 |
+
pad_tuple + (0, max_sample_length - _x.shape[0])
|
| 46 |
+
if padding_side == "right"
|
| 47 |
+
else pad_tuple + (max_sample_length - _x.shape[0], 0),
|
| 48 |
+
value=pad_value,
|
| 49 |
+
)
|
| 50 |
+
for _x in torch.split(x, sample_lengths, dim=0)
|
| 51 |
+
],
|
| 52 |
+
dim=0,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@overload
|
| 57 |
+
def insert_image_tokens(
|
| 58 |
+
inputs_embeds: torch.Tensor,
|
| 59 |
+
image_embeds: torch.Tensor | Sequence[torch.Tensor],
|
| 60 |
+
image_embeds_insertion_points: list[torch.Tensor],
|
| 61 |
+
recover_batch_dim: Literal[True],
|
| 62 |
+
attention_mask: torch.Tensor | None = None,
|
| 63 |
+
padding_side: Literal["left", "right"] = "right",
|
| 64 |
+
keep_only_attended: bool = False,
|
| 65 |
+
pad_output: int | float | bool = 0.0,
|
| 66 |
+
) -> tuple[
|
| 67 |
+
torch.Tensor,
|
| 68 |
+
None,
|
| 69 |
+
torch.Tensor | None,
|
| 70 |
+
torch.Tensor,
|
| 71 |
+
]: ...
|
| 72 |
+
@overload
|
| 73 |
+
def insert_image_tokens(
|
| 74 |
+
inputs_embeds: torch.Tensor,
|
| 75 |
+
image_embeds: torch.Tensor | Sequence[torch.Tensor],
|
| 76 |
+
image_embeds_insertion_points: list[torch.Tensor],
|
| 77 |
+
recover_batch_dim: Literal[False],
|
| 78 |
+
attention_mask: torch.Tensor | None = None,
|
| 79 |
+
padding_side: Literal["left", "right"] = "right",
|
| 80 |
+
keep_only_attended: bool = False,
|
| 81 |
+
pad_output: int | float | bool = 0.0,
|
| 82 |
+
) -> tuple[
|
| 83 |
+
torch.Tensor,
|
| 84 |
+
list[int],
|
| 85 |
+
torch.Tensor | None,
|
| 86 |
+
torch.Tensor,
|
| 87 |
+
]: ...
|
| 88 |
+
def insert_image_tokens(
|
| 89 |
+
inputs_embeds: torch.Tensor,
|
| 90 |
+
image_embeds: torch.Tensor | Sequence[torch.Tensor],
|
| 91 |
+
image_embeds_insertion_points: list[torch.Tensor],
|
| 92 |
+
recover_batch_dim: bool = True,
|
| 93 |
+
attention_mask: torch.Tensor | None = None,
|
| 94 |
+
padding_side: Literal["left", "right"] = "right",
|
| 95 |
+
keep_only_attended: bool = False,
|
| 96 |
+
pad_output: int | float | bool = 0.0,
|
| 97 |
+
) -> tuple[
|
| 98 |
+
torch.Tensor | torch.Tensor,
|
| 99 |
+
list[int] | None,
|
| 100 |
+
torch.Tensor | torch.Tensor | None,
|
| 101 |
+
torch.Tensor | torch.Tensor,
|
| 102 |
+
]:
|
| 103 |
+
"""
|
| 104 |
+
Insert image embeddings into text embeddings
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
inputs_embeds (torch.Tensor): (B, S, D) input token embeddings.
|
| 108 |
+
image_embeds (torch.Tensor | list[torch.Tensor]): (N_images, Nt, D) | List[(Nt, D)] image token embeddings.
|
| 109 |
+
image_embeds_insertion_points (list[torch.Tensor]): Insertion indices.
|
| 110 |
+
attention_mask (torch.Tensor, optional): (B, S) attention mask.
|
| 111 |
+
padding_side (Literal["left", "right"]): Padding scheme. Controls behavior for padded images.
|
| 112 |
+
return_indices (bool): Whether to return gather indices or the fused sequence directly.
|
| 113 |
+
keep_only_attended: This is only applicable when recover_batch_dim is False; whether to
|
| 114 |
+
remove any non-attended tokens in the whole array. In this case, the attention
|
| 115 |
+
mask returned is **still the original one**, so we can remember which indices have been
|
| 116 |
+
removed
|
| 117 |
+
Returns:
|
| 118 |
+
output (torch.Tensor): (B, S + Ni * Nt) gather indices or (B, S + Ni * Nt, D) fused sequence
|
| 119 |
+
image_embeds (torch.Tensor): (B, Ni * Nt) image embeds, padded and batch if input was a list
|
| 120 |
+
attention_mask (torch.Tensor): Same shape, 1 for real tokens, 0 for image and text padding.
|
| 121 |
+
image_tokens_mask (torch.Tensor): (B, S + Ni * Nt, 1), marks image token positions.
|
| 122 |
+
"""
|
| 123 |
+
if isinstance(image_embeds, list) and len(image_embeds) == 0:
|
| 124 |
+
batch_size, text_seq_length, token_dim = inputs_embeds.shape
|
| 125 |
+
if recover_batch_dim:
|
| 126 |
+
return (
|
| 127 |
+
inputs_embeds,
|
| 128 |
+
None,
|
| 129 |
+
attention_mask,
|
| 130 |
+
torch.zeros((batch_size, text_seq_length, 1), dtype=torch.bool),
|
| 131 |
+
)
|
| 132 |
+
else:
|
| 133 |
+
flattened_seq_length = inputs_embeds.shape[0] * inputs_embeds.shape[1]
|
| 134 |
+
return (
|
| 135 |
+
torch.reshape(inputs_embeds, (flattened_seq_length, inputs_embeds.shape[2])),
|
| 136 |
+
[text_seq_length] * inputs_embeds.shape[0],
|
| 137 |
+
attention_mask.flatten() if attention_mask is not None else None,
|
| 138 |
+
torch.zeros((flattened_seq_length, 1), dtype=torch.bool),
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Sanity checks
|
| 142 |
+
if isinstance(image_embeds, torch.Tensor):
|
| 143 |
+
assert inputs_embeds.shape[-1] == image_embeds.shape[-1]
|
| 144 |
+
else:
|
| 145 |
+
assert all(inputs_embeds.shape[-1] == _x.shape[-1] for _x in image_embeds)
|
| 146 |
+
|
| 147 |
+
batch_size, text_seq_length, token_dim = inputs_embeds.shape
|
| 148 |
+
image_seq_length = [x.shape[0] for x in image_embeds]
|
| 149 |
+
|
| 150 |
+
# Flatten insertion points
|
| 151 |
+
insertion_offset = []
|
| 152 |
+
counter, offset_from_text, offset_from_image = 0, 0, 0
|
| 153 |
+
for sample in image_embeds_insertion_points:
|
| 154 |
+
for pt in sample:
|
| 155 |
+
insertion_offset.append(pt + offset_from_image + offset_from_text)
|
| 156 |
+
offset_from_image += image_seq_length[counter]
|
| 157 |
+
counter += 1
|
| 158 |
+
offset_from_text += text_seq_length
|
| 159 |
+
image_insert_positions = [
|
| 160 |
+
x for idx, pt in enumerate(insertion_offset) for x in range(pt, pt + image_seq_length[idx])
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
# Flatten image embeds
|
| 164 |
+
if isinstance(image_embeds, list):
|
| 165 |
+
image_embeds = torch.cat(image_embeds, dim=0)
|
| 166 |
+
else:
|
| 167 |
+
image_embeds = type_cast(torch.Tensor, image_embeds)
|
| 168 |
+
image_embeds = torch.reshape(image_embeds, (-1, token_dim))
|
| 169 |
+
|
| 170 |
+
# Flatten text embeds across batch dim (B x S, D)
|
| 171 |
+
inputs_embeds = torch.reshape(inputs_embeds, (-1, token_dim))
|
| 172 |
+
flattened_seq_length = inputs_embeds.shape[0] + sum(image_seq_length)
|
| 173 |
+
text_insert_positions = sorted(
|
| 174 |
+
set(range(flattened_seq_length)).difference(set(image_insert_positions))
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Scatter image embeds in the flattened dict
|
| 178 |
+
# scatter text related stuff
|
| 179 |
+
output = torch.empty(
|
| 180 |
+
(flattened_seq_length, token_dim),
|
| 181 |
+
device=inputs_embeds.device,
|
| 182 |
+
dtype=inputs_embeds.dtype,
|
| 183 |
+
)
|
| 184 |
+
txt_positions_tensor = torch.Tensor(text_insert_positions).to(
|
| 185 |
+
dtype=torch.long, device=inputs_embeds.device
|
| 186 |
+
)
|
| 187 |
+
output.scatter_(0, txt_positions_tensor[:, None].expand(-1, token_dim), inputs_embeds)
|
| 188 |
+
attention_mask_new: torch.Tensor | None = None
|
| 189 |
+
if attention_mask is not None:
|
| 190 |
+
attention_mask_new = torch.ones(
|
| 191 |
+
(flattened_seq_length,), dtype=torch.bool, device=inputs_embeds.device
|
| 192 |
+
)
|
| 193 |
+
attention_mask_new.scatter_(
|
| 194 |
+
0, txt_positions_tensor, attention_mask.flatten().to(torch.bool)
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# scatter image related stuff
|
| 198 |
+
image_tokens_mask = torch.zeros(
|
| 199 |
+
(flattened_seq_length,), dtype=torch.bool, device=inputs_embeds.device
|
| 200 |
+
)
|
| 201 |
+
img_positions_tensor = torch.Tensor(image_insert_positions).to(
|
| 202 |
+
device=inputs_embeds.device, dtype=torch.long
|
| 203 |
+
)
|
| 204 |
+
output.scatter_(0, img_positions_tensor[:, None].expand(-1, token_dim), image_embeds)
|
| 205 |
+
image_tokens_mask.scatter_(0, img_positions_tensor, True)
|
| 206 |
+
|
| 207 |
+
# Compute expected sample length, taking into account the real batch
|
| 208 |
+
# i.e. recover the batch dimension of image embeddings
|
| 209 |
+
sample_lengths = []
|
| 210 |
+
counter = 0
|
| 211 |
+
for sample_idx, pts in enumerate(image_embeds_insertion_points):
|
| 212 |
+
num_image_tokens = 0
|
| 213 |
+
for _ in pts:
|
| 214 |
+
num_image_tokens += image_seq_length[counter]
|
| 215 |
+
counter += 1
|
| 216 |
+
if keep_only_attended and attention_mask is not None:
|
| 217 |
+
attended_seq_length = torch.sum(attention_mask[sample_idx]).cpu().item()
|
| 218 |
+
sample_lengths.append(attended_seq_length + num_image_tokens)
|
| 219 |
+
else:
|
| 220 |
+
sample_lengths.append(text_seq_length + num_image_tokens)
|
| 221 |
+
|
| 222 |
+
# For CASA attention, we can keep stuff flatten ad return
|
| 223 |
+
# the sample_lengths for the blockwise attention
|
| 224 |
+
if not recover_batch_dim:
|
| 225 |
+
if keep_only_attended and attention_mask_new is not None:
|
| 226 |
+
output = output[attention_mask_new]
|
| 227 |
+
image_tokens_mask = image_tokens_mask[attention_mask_new]
|
| 228 |
+
return output, sample_lengths, attention_mask_new, image_tokens_mask[..., None]
|
| 229 |
+
|
| 230 |
+
# Otherwise, time to (pad) and reshape
|
| 231 |
+
# Easy case: everything has the same length
|
| 232 |
+
if all(x == sample_lengths[0] for x in sample_lengths):
|
| 233 |
+
output = torch.reshape(output, (batch_size, sample_lengths[0], token_dim))
|
| 234 |
+
image_tokens_mask = torch.reshape(image_tokens_mask, (batch_size, sample_lengths[0], 1))
|
| 235 |
+
if attention_mask_new is not None:
|
| 236 |
+
attention_mask_new = torch.reshape(attention_mask_new, (batch_size, sample_lengths[0]))
|
| 237 |
+
# if there is any size mismatch we break into a
|
| 238 |
+
# list and pad again
|
| 239 |
+
else:
|
| 240 |
+
# split and merge
|
| 241 |
+
output = __split_n_merge__(output, sample_lengths, padding_side, pad_value=pad_output)
|
| 242 |
+
# note that the extra padding tokens are also marked as image tokens to be removed later
|
| 243 |
+
image_tokens_mask = __split_n_merge__(
|
| 244 |
+
image_tokens_mask, sample_lengths, padding_side, True
|
| 245 |
+
)[:, :, None]
|
| 246 |
+
if attention_mask_new is not None:
|
| 247 |
+
attention_mask_new = __split_n_merge__(
|
| 248 |
+
attention_mask_new, sample_lengths, padding_side, 0
|
| 249 |
+
)
|
| 250 |
+
# Return
|
| 251 |
+
return output, sample_lengths, attention_mask_new, image_tokens_mask
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def get_sample_lengths_from_insertion_points(
|
| 255 |
+
image_embeds_insertion_points: list[torch.Tensor],
|
| 256 |
+
image_embeds: torch.Tensor | list[torch.Tensor] | None,
|
| 257 |
+
total_seq_len: int | None = None,
|
| 258 |
+
attention_mask: torch.Tensor | None = None,
|
| 259 |
+
**kwargs: WindowsComputeKwargs,
|
| 260 |
+
) -> tuple[list[tuple[int, bool]], list[int]]:
|
| 261 |
+
"""Compute sample lengths as if each image insertion point defines a
|
| 262 |
+
new document (ex document ID)
|
| 263 |
+
"""
|
| 264 |
+
num_post_image_tokens = type_cast(int, kwargs.get("num_post_image_tokens", 0))
|
| 265 |
+
num_pre_image_tokens = type_cast(int, kwargs.get("num_pre_image_tokens", 0))
|
| 266 |
+
squashed_samples_lengths = type_cast(
|
| 267 |
+
list[list[int]] | None, kwargs.get("squashed_samples_lengths", None)
|
| 268 |
+
)
|
| 269 |
+
if squashed_samples_lengths is not None:
|
| 270 |
+
assert len(squashed_samples_lengths) == len(image_embeds_insertion_points)
|
| 271 |
+
|
| 272 |
+
def __insert_next_sample__(
|
| 273 |
+
batch_idx: int, insrt_pt: int, last_insrt_pt: int, end_of_batch_sample: bool = False
|
| 274 |
+
) -> None:
|
| 275 |
+
nonlocal attention_mask
|
| 276 |
+
nonlocal text_sample_lengths, full_sample_lengths
|
| 277 |
+
nonlocal cum_samples_lengths, current_image_offset
|
| 278 |
+
nonlocal last_image_idx, current_image_idx, current_length
|
| 279 |
+
# Add the sample between [last_insrt_pt, insrt_pt] with breaks in
|
| 280 |
+
# between any squashed samples we find on the way
|
| 281 |
+
start_pt = bisect.bisect_left(cum_samples_lengths, last_insrt_pt)
|
| 282 |
+
added_sample = False
|
| 283 |
+
for end_of_sample in cum_samples_lengths[start_pt:]:
|
| 284 |
+
# we will break the loop at the end when end_of_sample = insrt_pt
|
| 285 |
+
end_of_sample = min(end_of_sample, insrt_pt)
|
| 286 |
+
|
| 287 |
+
# Add between [last_insrt_pt, end_of_sample]
|
| 288 |
+
current_length = end_of_sample - last_insrt_pt
|
| 289 |
+
if attention_mask is not None:
|
| 290 |
+
current_length -= int(
|
| 291 |
+
torch.sum(~attention_mask[batch_idx, last_insrt_pt:end_of_sample]).item()
|
| 292 |
+
)
|
| 293 |
+
if current_length > 0:
|
| 294 |
+
added_sample = True
|
| 295 |
+
text_sample_lengths.append(
|
| 296 |
+
(current_length, end_of_batch_sample and insrt_pt == end_of_sample)
|
| 297 |
+
)
|
| 298 |
+
# add image tokens to current_length
|
| 299 |
+
if current_image_idx > 0 and image_embeds is not None:
|
| 300 |
+
images_in_sample = [
|
| 301 |
+
img_idx
|
| 302 |
+
for img_idx in range(last_image_idx, current_image_idx)
|
| 303 |
+
if img_idx < len(image_embeds_insertion_points[batch_idx])
|
| 304 |
+
and last_insrt_pt
|
| 305 |
+
<= image_embeds_insertion_points[batch_idx][img_idx]
|
| 306 |
+
< end_of_sample
|
| 307 |
+
]
|
| 308 |
+
if len(images_in_sample) > 0:
|
| 309 |
+
num_image_tokens = sum(
|
| 310 |
+
_x.shape[0]
|
| 311 |
+
for _x in image_embeds[
|
| 312 |
+
current_image_offset + images_in_sample[0] : current_image_offset
|
| 313 |
+
+ images_in_sample[-1]
|
| 314 |
+
+ 1
|
| 315 |
+
]
|
| 316 |
+
)
|
| 317 |
+
current_length += num_image_tokens
|
| 318 |
+
full_sample_lengths.append(current_length)
|
| 319 |
+
|
| 320 |
+
# prepare for next loop
|
| 321 |
+
last_insrt_pt = end_of_sample
|
| 322 |
+
if end_of_sample == insrt_pt:
|
| 323 |
+
break
|
| 324 |
+
# End of loop: Catching weird use case where we may end up on a span
|
| 325 |
+
# full of padding tokens which will not get added due to current_length > 0
|
| 326 |
+
if end_of_batch_sample:
|
| 327 |
+
assert added_sample, "Weird edge case. Don't do that, thank you"
|
| 328 |
+
text_sample_lengths[-1] = (text_sample_lengths[-1][0], True)
|
| 329 |
+
|
| 330 |
+
# End of loop: Catching weird use case where we may end up on a span
|
| 331 |
+
# full of padding tokens which will not get added due to current_length > 0
|
| 332 |
+
if end_of_batch_sample:
|
| 333 |
+
assert added_sample, "Weird edge case. Don't do that, thank you"
|
| 334 |
+
text_sample_lengths[-1] = (text_sample_lengths[-1][0], True)
|
| 335 |
+
|
| 336 |
+
current_image_offset = 0
|
| 337 |
+
text_sample_lengths, full_sample_lengths = [], []
|
| 338 |
+
cum_samples_lengths: list[int] = []
|
| 339 |
+
current_length, last_insrt_pt, last_image_idx, current_image_idx = 0, 0, 0, 0
|
| 340 |
+
for batch_idx, pts in enumerate(image_embeds_insertion_points):
|
| 341 |
+
if squashed_samples_lengths is not None:
|
| 342 |
+
cum_samples_lengths = list(accumulate(squashed_samples_lengths[batch_idx]))
|
| 343 |
+
else:
|
| 344 |
+
assert total_seq_len is not None
|
| 345 |
+
cum_samples_lengths = [total_seq_len]
|
| 346 |
+
|
| 347 |
+
for current_image_idx, insrt_pt in enumerate(pts.cpu().tolist()):
|
| 348 |
+
# check if the images are consecutive in which way we want
|
| 349 |
+
# them to belong to the same window
|
| 350 |
+
if current_image_idx >= 1 and insrt_pt == (
|
| 351 |
+
image_embeds_insertion_points[batch_idx][current_image_idx - 1]
|
| 352 |
+
+ num_pre_image_tokens
|
| 353 |
+
+ num_post_image_tokens
|
| 354 |
+
):
|
| 355 |
+
continue
|
| 356 |
+
# Otherwise, we found a new sample
|
| 357 |
+
# not very important but for completeness: the insertion points come *after*
|
| 358 |
+
# the pre-image tokens per design but for the document-id mask it is more consistent to
|
| 359 |
+
# have them correspond to the same image
|
| 360 |
+
insrt_pt -= num_pre_image_tokens
|
| 361 |
+
|
| 362 |
+
# Update text and full sample lengths
|
| 363 |
+
if insrt_pt > last_insrt_pt:
|
| 364 |
+
__insert_next_sample__(
|
| 365 |
+
batch_idx, insrt_pt, last_insrt_pt, end_of_batch_sample=False
|
| 366 |
+
)
|
| 367 |
+
last_image_idx = current_image_idx
|
| 368 |
+
last_insrt_pt = insrt_pt
|
| 369 |
+
|
| 370 |
+
# End of batch: add sample in progress and reset
|
| 371 |
+
current_image_idx += 1
|
| 372 |
+
if cum_samples_lengths[-1] > last_insrt_pt:
|
| 373 |
+
__insert_next_sample__(
|
| 374 |
+
batch_idx, cum_samples_lengths[-1], last_insrt_pt, end_of_batch_sample=True
|
| 375 |
+
)
|
| 376 |
+
current_length, last_insrt_pt, last_image_idx, current_image_idx = 0, 0, 0, 0
|
| 377 |
+
current_image_offset += len(pts)
|
| 378 |
+
|
| 379 |
+
# Sanity checks that the is_eob are correctly place
|
| 380 |
+
assert sum(_x[1] for _x in text_sample_lengths) == len(image_embeds_insertion_points), (
|
| 381 |
+
f"Number of eob markers ({sum(_x[1] for _x in text_sample_lengths)}) differs"
|
| 382 |
+
f" from original batch size ({len(image_embeds_insertion_points)})"
|
| 383 |
+
)
|
| 384 |
+
return text_sample_lengths, full_sample_lengths
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class CASAAttentionHandler:
|
| 388 |
+
def __init__(
|
| 389 |
+
self,
|
| 390 |
+
inputs_embeds: torch.Tensor,
|
| 391 |
+
image_embeds: torch.Tensor | list[torch.Tensor],
|
| 392 |
+
image_embeds_insertion_points: list[torch.Tensor],
|
| 393 |
+
attention_mask: torch.Tensor | None = None,
|
| 394 |
+
rope_fn: Callable | None = None,
|
| 395 |
+
windows: Literal["batch", "squashed", "images", "turn_based"] = "images",
|
| 396 |
+
use_asymetric_q_kv: bool = True,
|
| 397 |
+
casa_windows_info: None | dict = None,
|
| 398 |
+
):
|
| 399 |
+
"""Initialize the structure holding the query buffer for CASA attention layers
|
| 400 |
+
(ie the **flattened** text+image inserted tokens).
|
| 401 |
+
Note that this structure is shared across all casa layers, and it gets updated
|
| 402 |
+
with the current hidden states at every layer; this is merely a buffer to keep
|
| 403 |
+
scatter_ operations in-plae as much as possible
|
| 404 |
+
|
| 405 |
+
In this module, the embeddings related values (image_tokens_mask,
|
| 406 |
+
text_sample_lengths etc) are stored under the assumption of a tensor
|
| 407 |
+
which is *flatened* and *witout padding tokens*
|
| 408 |
+
Only the attention mask is kept as-is (text-only, batched, padded) to
|
| 409 |
+
be able to recover original shapes when needed
|
| 410 |
+
"""
|
| 411 |
+
super().__init__()
|
| 412 |
+
assert windows == "images" # for inference code release
|
| 413 |
+
# Note 1: Unless overriden, text/full_sample_lengths are defined such that one
|
| 414 |
+
# document = one sample in the batch
|
| 415 |
+
if attention_mask is None:
|
| 416 |
+
text_sample_lengths = [(_x.shape[0], True) for _x in inputs_embeds]
|
| 417 |
+
else:
|
| 418 |
+
text_sample_lengths = [(int(torch.sum(_x).item()), True) for _x in attention_mask]
|
| 419 |
+
(
|
| 420 |
+
full_inputs_embeds,
|
| 421 |
+
full_sample_lengths,
|
| 422 |
+
# Full attention mask is only needed at inference to
|
| 423 |
+
# flatten the KV-Cache and remove padding tokens
|
| 424 |
+
_,
|
| 425 |
+
self.image_tokens_mask,
|
| 426 |
+
) = insert_image_tokens(
|
| 427 |
+
inputs_embeds=inputs_embeds,
|
| 428 |
+
image_embeds=image_embeds,
|
| 429 |
+
image_embeds_insertion_points=image_embeds_insertion_points,
|
| 430 |
+
attention_mask=attention_mask,
|
| 431 |
+
recover_batch_dim=False,
|
| 432 |
+
keep_only_attended=attention_mask is not None,
|
| 433 |
+
)
|
| 434 |
+
assert self.image_tokens_mask.ndim == 2
|
| 435 |
+
self.image_embeds = image_embeds
|
| 436 |
+
self.image_embeds_insertion_points = image_embeds_insertion_points
|
| 437 |
+
self.attention_mask = None if attention_mask is None else attention_mask.bool()
|
| 438 |
+
self.use_asymetric_qkv = use_asymetric_q_kv
|
| 439 |
+
# At inference, we have to use asymetric QKV for efficiency
|
| 440 |
+
if self.attention_mask is not None:
|
| 441 |
+
self.use_asymetric_qkv = True
|
| 442 |
+
|
| 443 |
+
# Build CASA windows
|
| 444 |
+
assert casa_windows_info is not None
|
| 445 |
+
text_sample_lengths, full_sample_lengths = get_sample_lengths_from_insertion_points(
|
| 446 |
+
image_embeds_insertion_points=image_embeds_insertion_points,
|
| 447 |
+
image_embeds=image_embeds,
|
| 448 |
+
total_seq_len=inputs_embeds.shape[1],
|
| 449 |
+
attention_mask=self.attention_mask,
|
| 450 |
+
**casa_windows_info, # pyright: ignore
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
# Sanity checks on the sample lengths
|
| 454 |
+
self.text_sample_lengths = [(int(s), eob) for s, eob in text_sample_lengths if s > 0]
|
| 455 |
+
self.full_sample_lengths = [int(s) for s in full_sample_lengths if s > 0]
|
| 456 |
+
|
| 457 |
+
assert len(self.text_sample_lengths) == len(self.full_sample_lengths), (
|
| 458 |
+
f"Sanity check failed; text sample lengths {len(self.text_sample_lengths)}"
|
| 459 |
+
f" != full sample lengths {len(self.full_sample_lengths)}"
|
| 460 |
+
)
|
| 461 |
+
if self.attention_mask is None:
|
| 462 |
+
num_unpadded_text_tokens = inputs_embeds.shape[0] * inputs_embeds.shape[1]
|
| 463 |
+
else:
|
| 464 |
+
num_unpadded_text_tokens = int(
|
| 465 |
+
torch.sum(type_cast(torch.Tensor, attention_mask)).item()
|
| 466 |
+
)
|
| 467 |
+
assert sum(_x[0] for _x in self.text_sample_lengths) == num_unpadded_text_tokens, (
|
| 468 |
+
f"Sanity check failed; sample lengths {sum(self.full_sample_lengths)} != {full_inputs_embeds.shape[0]}"
|
| 469 |
+
)
|
| 470 |
+
assert sum(self.full_sample_lengths) == full_inputs_embeds.shape[0], (
|
| 471 |
+
f"Sanity check failed; sample lengths {sum(self.full_sample_lengths)} != {full_inputs_embeds.shape[0]}"
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
# Finally we can compute cu_seqlen based on sample lengths
|
| 475 |
+
self.max_seqlen_q = max(self.text_sample_lengths)[0]
|
| 476 |
+
self.cu_seqlens_q = self.get_cu_seqlens(
|
| 477 |
+
[x[0] for x in self.text_sample_lengths], device=inputs_embeds.device
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
self.max_seqlen_kv = max(self.full_sample_lengths)
|
| 481 |
+
self.cu_seqlens_kv = self.get_cu_seqlens(
|
| 482 |
+
self.full_sample_lengths, device=inputs_embeds.device
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
# For inference: We save the length of the current document
|
| 486 |
+
# to trim the KV cache appropriately
|
| 487 |
+
self.current_doc_lengths = self.full_sample_lengths
|
| 488 |
+
|
| 489 |
+
# Precompute position embeddings
|
| 490 |
+
self.position_embeds = None
|
| 491 |
+
self.rope_fn = rope_fn
|
| 492 |
+
if self.rope_fn is not None:
|
| 493 |
+
self.position_embeds = self.compute_position_embeddings(
|
| 494 |
+
self.rope_fn, full_sample_lengths, dummy_for_dtype_and_device=full_inputs_embeds
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
@property
|
| 498 |
+
def batch_lengths(self) -> list[int]:
|
| 499 |
+
"""Return a (batch_size,) list of integers containing the
|
| 500 |
+
number of (non-padded) text tokens for each sample in the batch"""
|
| 501 |
+
bls = [0]
|
| 502 |
+
for ln, eob in self.text_sample_lengths:
|
| 503 |
+
bls[-1] += ln
|
| 504 |
+
if eob:
|
| 505 |
+
bls.append(0)
|
| 506 |
+
return bls[:-1]
|
| 507 |
+
|
| 508 |
+
@property
|
| 509 |
+
def full_batch_lengths(self) -> list[int]:
|
| 510 |
+
"""Same as batch_lengths for text+image tokens"""
|
| 511 |
+
bls = [0]
|
| 512 |
+
for (_, eob), ln in zip(self.text_sample_lengths, self.full_sample_lengths):
|
| 513 |
+
bls[-1] += ln
|
| 514 |
+
if eob:
|
| 515 |
+
bls.append(0)
|
| 516 |
+
return bls[:-1]
|
| 517 |
+
|
| 518 |
+
def get_cu_seqlens(
|
| 519 |
+
self, sample_lengths: list[int], device: torch.device | None
|
| 520 |
+
) -> torch.Tensor:
|
| 521 |
+
"""Update cu_seqlengths according to the given sample_lengths"""
|
| 522 |
+
return torch.Tensor(list(accumulate(sample_lengths, initial=0))).to(
|
| 523 |
+
dtype=torch.int32, device=device
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
def compute_position_embeddings(
|
| 527 |
+
self,
|
| 528 |
+
rope_fn: Callable,
|
| 529 |
+
sample_lengths: list[int],
|
| 530 |
+
dummy_for_dtype_and_device: torch.Tensor,
|
| 531 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 532 |
+
"""Compute info required for position embeddings. Can be override e.g. for Qwen"""
|
| 533 |
+
# option 1: Standard range
|
| 534 |
+
# position_ids = torch.arange(0, full_inputs_embeds.shape[0])
|
| 535 |
+
# option 2: Follows document boundary
|
| 536 |
+
position_ids = torch.cat([torch.arange(0, lg) for lg in sample_lengths], dim=0)
|
| 537 |
+
return rope_fn(
|
| 538 |
+
dummy_for_dtype_and_device,
|
| 539 |
+
position_ids.to(dummy_for_dtype_and_device.device)[None, ...],
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
def get_position_embedding(
|
| 543 |
+
self,
|
| 544 |
+
key: Literal["q", "kv"],
|
| 545 |
+
num_queries: int = 0,
|
| 546 |
+
) -> tuple[torch.Tensor, torch.Tensor] | None:
|
| 547 |
+
if self.position_embeds is None:
|
| 548 |
+
return None
|
| 549 |
+
cos, sin = self.position_embeds
|
| 550 |
+
bls = self.full_batch_lengths
|
| 551 |
+
# For Q, we only want the text-only posembeds
|
| 552 |
+
if key == "q" and self.use_asymetric_qkv:
|
| 553 |
+
bls = self.batch_lengths
|
| 554 |
+
cos, sin = cos[:, ~self.image_tokens_mask[:, 0]], sin[:, ~self.image_tokens_mask[:, 0]]
|
| 555 |
+
elif key not in {"q", "kv"}:
|
| 556 |
+
raise ValueError(f"Unknow for position embedding {key}")
|
| 557 |
+
|
| 558 |
+
# Easy case: training or first step at inference: we use all the posembeds
|
| 559 |
+
if num_queries == 0:
|
| 560 |
+
return cos, sin
|
| 561 |
+
# If num queries is given, we need to trim for *every sample in the batch*
|
| 562 |
+
cos = [x[:, -num_queries:] for x in torch.split(cos, bls, dim=1)]
|
| 563 |
+
sin = [x[:, -num_queries:] for x in torch.split(sin, bls, dim=1)]
|
| 564 |
+
return torch.cat(cos, dim=1), torch.cat(sin, dim=1)
|
| 565 |
+
|
| 566 |
+
def get_full_embeds(
|
| 567 |
+
self, hidden_states: torch.Tensor, norm_fn: Callable | None
|
| 568 |
+
) -> torch.Tensor:
|
| 569 |
+
"""Update attended hidden states in the current query buffer
|
| 570 |
+
|
| 571 |
+
:param hidden_states: (b, s, d) Tensor input to the CASA attention layer"
|
| 572 |
+
"""
|
| 573 |
+
assert self.image_embeds is not None
|
| 574 |
+
return insert_image_tokens(
|
| 575 |
+
inputs_embeds=hidden_states,
|
| 576 |
+
image_embeds=self.image_embeds
|
| 577 |
+
if norm_fn is None
|
| 578 |
+
else norm_fn(self.image_embeds)
|
| 579 |
+
if isinstance(self.image_embeds, torch.Tensor)
|
| 580 |
+
else [norm_fn(_x) for _x in self.image_embeds],
|
| 581 |
+
image_embeds_insertion_points=self.image_embeds_insertion_points,
|
| 582 |
+
attention_mask=self.attention_mask,
|
| 583 |
+
recover_batch_dim=False,
|
| 584 |
+
keep_only_attended=self.attention_mask is not None,
|
| 585 |
+
)[0][None, :, :]
|
| 586 |
+
|
| 587 |
+
def recover_text_embeds(
|
| 588 |
+
self,
|
| 589 |
+
hidden_states_out: torch.Tensor,
|
| 590 |
+
hidden_states_in: torch.Tensor,
|
| 591 |
+
update_image_embeddings: bool = False,
|
| 592 |
+
) -> torch.Tensor:
|
| 593 |
+
"""Returns text embeddings from the query buffer, including non-attended tokens at inference"""
|
| 594 |
+
if update_image_embeddings and not self.use_asymetric_qkv:
|
| 595 |
+
raise NotImplementedError("Implement image embeddings updates for asymetric QKV")
|
| 596 |
+
# Remove image tokens in the symetric case
|
| 597 |
+
if not self.use_asymetric_qkv:
|
| 598 |
+
hidden_states_out = hidden_states_out[~self.image_tokens_mask[:, 0]]
|
| 599 |
+
|
| 600 |
+
# if there's not attention mask, we are in the right padded case
|
| 601 |
+
# (keep_only_attended = False) we can directly return the query
|
| 602 |
+
# outputs (which don't contain the image)
|
| 603 |
+
if self.attention_mask is None:
|
| 604 |
+
return hidden_states_out
|
| 605 |
+
|
| 606 |
+
# Otherwise, we need to "scatter" back only the text-attended tokens to the original
|
| 607 |
+
# hidden states, which contain the paddings
|
| 608 |
+
num_queries = hidden_states_in.shape[1]
|
| 609 |
+
|
| 610 |
+
# Case 1: the padded hidden_states_in is larger than hidden_states_out
|
| 611 |
+
# we rebatch+pad hidden_state_out before doing the scattering
|
| 612 |
+
if hidden_states_out.shape[0] != hidden_states_in.shape[0] * hidden_states_in.shape[1]:
|
| 613 |
+
s = torch.split(hidden_states_out, self.batch_lengths, dim=0)
|
| 614 |
+
assert max(_s.shape[0] for _s in s) <= num_queries # sanity check
|
| 615 |
+
s = [
|
| 616 |
+
torch.nn.functional.pad(_s, (0, 0, num_queries - _s.shape[0], 0), value=0)
|
| 617 |
+
for _s in s
|
| 618 |
+
]
|
| 619 |
+
return torch.where(
|
| 620 |
+
self.attention_mask[:, -num_queries:, None],
|
| 621 |
+
torch.stack(s),
|
| 622 |
+
hidden_states_in,
|
| 623 |
+
)
|
| 624 |
+
# If both have the smae shape, it means hidden_states_in contained no padding
|
| 625 |
+
# so we can directly return hidden states out
|
| 626 |
+
return hidden_states_out
|
| 627 |
+
|
| 628 |
+
def extend(self, num_tokens: int, offset: int = 0):
|
| 629 |
+
"""Extend all necessary values of the Handler for infenrece
|
| 630 |
+
Note: this implementation curently assumes a single conversation at a time
|
| 631 |
+
(otherwise image tokens mask would have to change) and that tokens added are
|
| 632 |
+
attended to"""
|
| 633 |
+
# image embeds is inserted in the first step and stored in the KV cache
|
| 634 |
+
self.image_embeds = None
|
| 635 |
+
|
| 636 |
+
# Update attention mask (non-flattened) (assumes all new tokens are attended to)
|
| 637 |
+
if self.attention_mask is not None:
|
| 638 |
+
self.attention_mask = torch.nn.functional.pad(
|
| 639 |
+
self.attention_mask, (0, num_tokens), value=1
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
# Update image token mask (assumes only one image/conversation
|
| 643 |
+
# is started at once so that we always extend by zero)
|
| 644 |
+
# Note that the mask is stored flattened to avoid padding so we have to
|
| 645 |
+
# do something a bit ugly and inefficient here
|
| 646 |
+
imtokmask = torch.split(self.image_tokens_mask, self.full_batch_lengths, dim=0)
|
| 647 |
+
imtokmask = [torch.nn.functional.pad(x, (0, 0, 0, num_tokens), value=0) for x in imtokmask]
|
| 648 |
+
self.image_tokens_mask = torch.cat(imtokmask, dim=0)
|
| 649 |
+
|
| 650 |
+
# Recompute cumulative document lengths after assigning the new
|
| 651 |
+
# number of tokens to each sample in the batch
|
| 652 |
+
for idx, (ln, is_eob) in enumerate(self.text_sample_lengths):
|
| 653 |
+
if is_eob:
|
| 654 |
+
self.text_sample_lengths[idx] = (num_tokens + ln, is_eob)
|
| 655 |
+
self.full_sample_lengths[idx] += num_tokens
|
| 656 |
+
|
| 657 |
+
# Recompute cu sequlen
|
| 658 |
+
# First step: Technically this never occurs, but we keep it for completeness
|
| 659 |
+
if offset == 0:
|
| 660 |
+
self.max_seqlen_q = max(self.text_sample_lengths)[0]
|
| 661 |
+
self.cu_seqlens_q = self.get_cu_seqlens(
|
| 662 |
+
[x[0] for x in self.text_sample_lengths], device=self.cu_seqlens_q.device
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
self.max_seqlen_kv = max(self.full_sample_lengths)
|
| 666 |
+
self.cu_seqlens_kv = self.get_cu_seqlens(
|
| 667 |
+
self.full_sample_lengths, device=self.cu_seqlens_kv.device
|
| 668 |
+
)
|
| 669 |
+
# Step > 0: the annoying part is since flashattn_varlen does not accept
|
| 670 |
+
# 0-len documents, we need to remove documents from the KV Cache when they're past
|
| 671 |
+
# their windows. In our current setting, this means we only want to keep the latest
|
| 672 |
+
# documents
|
| 673 |
+
else:
|
| 674 |
+
self.max_seqlen_q = num_tokens
|
| 675 |
+
self.cu_seqlens_q = self.get_cu_seqlens(
|
| 676 |
+
[num_tokens for (_, eob) in self.text_sample_lengths if eob],
|
| 677 |
+
device=self.cu_seqlens_q.device,
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
final_doc_lengths = [
|
| 681 |
+
ln
|
| 682 |
+
for (_, eob), ln in zip(self.text_sample_lengths, self.full_sample_lengths)
|
| 683 |
+
if eob
|
| 684 |
+
]
|
| 685 |
+
self.current_doc_lengths = final_doc_lengths
|
| 686 |
+
self.max_seqlen_kv = max(self.current_doc_lengths)
|
| 687 |
+
self.cu_seqlens_kv = self.get_cu_seqlens(
|
| 688 |
+
final_doc_lengths,
|
| 689 |
+
device=self.cu_seqlens_kv.device,
|
| 690 |
+
)
|
| 691 |
+
# Update position embeddings
|
| 692 |
+
if self.rope_fn is not None and self.position_embeds is not None:
|
| 693 |
+
self.position_embeds = self.compute_position_embeddings(
|
| 694 |
+
self.rope_fn,
|
| 695 |
+
self.full_sample_lengths,
|
| 696 |
+
dummy_for_dtype_and_device=self.position_embeds[0],
|
| 697 |
+
)
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
@dataclass
|
| 701 |
+
class CASAAttentionStreamingState(StreamingState):
|
| 702 |
+
"""Streaming State for CASA Atention module. Keep the hidden"""
|
| 703 |
+
|
| 704 |
+
k: torch.Tensor = None # pyright: ignore[reportAssignmentType]
|
| 705 |
+
v: torch.Tensor = None # pyright: ignore[reportAssignmentType]
|
| 706 |
+
recover_batched_trims: list[int] = None # pyright: ignore[reportAssignmentType]
|
| 707 |
+
casa_handler: CASAAttentionHandler = None # pyright: ignore[reportAssignmentType]
|
| 708 |
+
|
| 709 |
+
def maybe_get_casa_handler(
|
| 710 |
+
self,
|
| 711 |
+
casa_handler: CASAAttentionHandler | None,
|
| 712 |
+
is_first_casa_layer: bool = False,
|
| 713 |
+
num_queries: int = -1,
|
| 714 |
+
) -> CASAAttentionHandler | None:
|
| 715 |
+
# Set given Casa Handler the first time we reach this
|
| 716 |
+
if self.casa_handler is None:
|
| 717 |
+
self.casa_handler = casa_handler # pyright: ignore
|
| 718 |
+
# subsequent calls: we need to extend shape to accomodate new tokens
|
| 719 |
+
# however because CASA handler is shared across layers, we only need to do it once
|
| 720 |
+
if self.casa_handler is not None and self.offset > 0 and is_first_casa_layer:
|
| 721 |
+
# since CasaHandler is shared, we only use its extend step once
|
| 722 |
+
self.casa_handler.extend(num_queries, offset=self.offset)
|
| 723 |
+
return self.casa_handler
|
| 724 |
+
|
| 725 |
+
def __recover_batched_kv__(self, states: torch.Tensor) -> torch.Tensor:
|
| 726 |
+
"""Recover batched key/value states with left padding"""
|
| 727 |
+
s = torch.split(states, self.casa_handler.full_batch_lengths, dim=1)
|
| 728 |
+
mlen = max(_s.shape[1] for _s in s)
|
| 729 |
+
# Remember the added padding so that we can re-flatten KV later
|
| 730 |
+
if self.recover_batched_trims is None:
|
| 731 |
+
self.recover_batched_trims = [mlen - _s.shape[1] for _s in s]
|
| 732 |
+
s = [torch.nn.functional.pad(_s, (0, 0, 0, 0, mlen - _s.shape[1], 0), value=0) for _s in s]
|
| 733 |
+
return torch.cat(s, dim=0)
|
| 734 |
+
|
| 735 |
+
def __get_flattened_kv__(
|
| 736 |
+
self, k: torch.Tensor | None = None, v: torch.Tensor | None = None
|
| 737 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 738 |
+
"""
|
| 739 |
+
Flattened and remove padding to act with flash_attn_func
|
| 740 |
+
"""
|
| 741 |
+
k = self.k if k is None else k
|
| 742 |
+
v = self.v if v is None else v
|
| 743 |
+
assert k is not None and v is not None
|
| 744 |
+
|
| 745 |
+
# Since every batch at least contributes one document,
|
| 746 |
+
# we can use this to check whether we are in streaming mode with dropped docs.
|
| 747 |
+
# If so, we should trim the kv cache accordingly
|
| 748 |
+
if len(self.casa_handler.current_doc_lengths) == len(k):
|
| 749 |
+
k = torch.cat(
|
| 750 |
+
[
|
| 751 |
+
_k[self.recover_batched_trims[idx] :][-doc_len:]
|
| 752 |
+
for idx, _k, doc_len in zip(
|
| 753 |
+
range(len(k)), k, self.casa_handler.current_doc_lengths
|
| 754 |
+
)
|
| 755 |
+
]
|
| 756 |
+
)
|
| 757 |
+
v = torch.cat(
|
| 758 |
+
[
|
| 759 |
+
_v[self.recover_batched_trims[idx] :][-doc_len:]
|
| 760 |
+
for idx, _v, doc_len in zip(
|
| 761 |
+
range(len(k)), v, self.casa_handler.current_doc_lengths
|
| 762 |
+
)
|
| 763 |
+
]
|
| 764 |
+
)
|
| 765 |
+
return k[None, ...], v[None, ...]
|
| 766 |
+
|
| 767 |
+
k = torch.cat([_k[self.recover_batched_trims[idx] :] for idx, _k in enumerate(k)])
|
| 768 |
+
v = torch.cat([_v[self.recover_batched_trims[idx] :] for idx, _v in enumerate(v)])
|
| 769 |
+
return k[None, ...], v[None, ...]
|
| 770 |
+
|
| 771 |
+
def extend_kv(
|
| 772 |
+
self, key_states: torch.Tensor, value_states: torch.Tensor
|
| 773 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 774 |
+
"""
|
| 775 |
+
Extend KV Cache while keep
|
| 776 |
+
"""
|
| 777 |
+
assert self.casa_handler is not None
|
| 778 |
+
if self.k is None and self.v is None:
|
| 779 |
+
# Init with batch-padded key and value states
|
| 780 |
+
self.k = self.__recover_batched_kv__(key_states)
|
| 781 |
+
self.v = self.__recover_batched_kv__(value_states)
|
| 782 |
+
return self.__get_flattened_kv__()
|
| 783 |
+
if self.k is not None and self.v is not None:
|
| 784 |
+
# this is during generation; normally there is no padding at this stage
|
| 785 |
+
# so we can directly reshape the flattened key states
|
| 786 |
+
rshp = (self.k.shape[0], -1, self.k.shape[2], self.k.shape[3])
|
| 787 |
+
self.k = torch.cat([self.k, key_states.reshape(rshp)], dim=1)
|
| 788 |
+
self.v = torch.cat([self.v, value_states.reshape(rshp)], dim=1)
|
| 789 |
+
return self.__get_flattened_kv__()
|
| 790 |
+
|
| 791 |
+
raise ValueError("Impossible configuration (k and v updates are desynchronized )")
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
class CASAAttention(StreamingModule[CASAAttentionStreamingState]):
|
| 795 |
+
def __init__(
|
| 796 |
+
self,
|
| 797 |
+
config: "PretrainedConfig",
|
| 798 |
+
layer_idx: int | None,
|
| 799 |
+
self_attn: torch.nn.Module | None = None,
|
| 800 |
+
input_layernorm_fn: Callable[[torch.Tensor], torch.Tensor] | None = None,
|
| 801 |
+
):
|
| 802 |
+
super().__init__(CASAAttentionStreamingState)
|
| 803 |
+
self.head_dim = config.head_dim
|
| 804 |
+
self.config = config
|
| 805 |
+
|
| 806 |
+
self.is_first_casa_layer = layer_idx == (min(config.xa_layers) if config.xa_layers else 0)
|
| 807 |
+
self.use_delta_w = config.casa_delta_w
|
| 808 |
+
|
| 809 |
+
self.q_proj_casa = self.init_from_config_proj("q", config)
|
| 810 |
+
self.k_proj_casa = self.init_from_config_proj("k", config)
|
| 811 |
+
self.v_proj_casa = self.init_from_config_proj("v", config)
|
| 812 |
+
self.o_proj_casa = self.init_from_config_proj("o", config)
|
| 813 |
+
|
| 814 |
+
# Delta_w
|
| 815 |
+
self.override_q_proj: Callable[[torch.Tensor], torch.Tensor] | None = None
|
| 816 |
+
self.override_k_proj: Callable[[torch.Tensor], torch.Tensor] | None = None
|
| 817 |
+
self.override_v_proj: Callable[[torch.Tensor], torch.Tensor] | None = None
|
| 818 |
+
self.override_o_proj: Callable[[torch.Tensor], torch.Tensor] | None = None
|
| 819 |
+
|
| 820 |
+
if config.casa_delta_w:
|
| 821 |
+
assert self_attn is not None
|
| 822 |
+
self.set_delta_w(self_attn)
|
| 823 |
+
|
| 824 |
+
# Layer norm
|
| 825 |
+
self.norm_fn: Callable | None = None
|
| 826 |
+
if config.xa_norm_on_images:
|
| 827 |
+
assert input_layernorm_fn is not None
|
| 828 |
+
self.norm_fn = input_layernorm_fn
|
| 829 |
+
|
| 830 |
+
def init_from_mha(self, self_attn: torch.nn.Module):
|
| 831 |
+
assert self_attn is not None
|
| 832 |
+
with torch.no_grad():
|
| 833 |
+
assert hasattr(self_attn, "q_proj")
|
| 834 |
+
for key in ["q", "k", "v", "o"]:
|
| 835 |
+
src = type_cast(torch.nn.Linear, getattr(self_attn, f"{key}_proj"))
|
| 836 |
+
tgt = type_cast(torch.nn.Linear, getattr(self, f"{key}_proj_casa"))
|
| 837 |
+
tgt.weight.copy_(src.weight)
|
| 838 |
+
if tgt.bias is not None and src.bias is not None:
|
| 839 |
+
tgt.bias.copy_(src.bias)
|
| 840 |
+
|
| 841 |
+
def set_delta_w(self, self_attn: torch.nn.Module):
|
| 842 |
+
"""Delta w setup"""
|
| 843 |
+
self.override_q_proj = delta_w_factory(
|
| 844 |
+
self.q_proj_casa, type_cast(torch.nn.Linear, self_attn.q_proj)
|
| 845 |
+
)
|
| 846 |
+
self.override_k_proj = delta_w_factory(
|
| 847 |
+
self.k_proj_casa, type_cast(torch.nn.Linear, self_attn.k_proj)
|
| 848 |
+
)
|
| 849 |
+
self.override_v_proj = delta_w_factory(
|
| 850 |
+
self.v_proj_casa, type_cast(torch.nn.Linear, self_attn.v_proj)
|
| 851 |
+
)
|
| 852 |
+
self.override_o_proj = delta_w_factory(
|
| 853 |
+
self.o_proj_casa, type_cast(torch.nn.Linear, self_attn.o_proj)
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
with torch.no_grad():
|
| 857 |
+
torch.nn.init.zeros_(self.q_proj_casa.weight)
|
| 858 |
+
torch.nn.init.zeros_(self.k_proj_casa.weight)
|
| 859 |
+
torch.nn.init.zeros_(self.v_proj_casa.weight)
|
| 860 |
+
torch.nn.init.zeros_(self.o_proj_casa.weight)
|
| 861 |
+
if self.q_proj_casa.bias is not None:
|
| 862 |
+
torch.nn.init.zeros_(self.q_proj_casa.bias)
|
| 863 |
+
if self.k_proj_casa.bias is not None:
|
| 864 |
+
torch.nn.init.zeros_(self.k_proj_casa.bias)
|
| 865 |
+
if self.v_proj_casa.bias is not None:
|
| 866 |
+
torch.nn.init.zeros_(self.v_proj_casa.bias)
|
| 867 |
+
if self.o_proj_casa.bias is not None:
|
| 868 |
+
torch.nn.init.zeros_(self.o_proj_casa.bias)
|
| 869 |
+
|
| 870 |
+
def init_from_config_proj(
|
| 871 |
+
self, key: Literal["q", "o", "k", "v"], config: PretrainedConfig
|
| 872 |
+
) -> torch.nn.Linear:
|
| 873 |
+
"""Initialize the Linear proj in this module"""
|
| 874 |
+
raise NotImplementedError("Abastract class.")
|
| 875 |
+
|
| 876 |
+
def apply_position_embeddings(
|
| 877 |
+
self,
|
| 878 |
+
key: Literal["q", "kv"],
|
| 879 |
+
x: torch.Tensor, # (batch, seq_len, num_heads, head_dim)
|
| 880 |
+
casa_handler: CASAAttentionHandler | None,
|
| 881 |
+
num_queries: int = 0,
|
| 882 |
+
unsqueeze_dim: int = 1,
|
| 883 |
+
) -> torch.Tensor: # (batch, seq_len, num_heads, head_dim)
|
| 884 |
+
"""Apply position embeddings to query and key states"""
|
| 885 |
+
raise NotImplementedError("Abastract class.")
|
| 886 |
+
|
| 887 |
+
def forward(
|
| 888 |
+
self,
|
| 889 |
+
hidden_states: torch.Tensor,
|
| 890 |
+
casa_handler: CASAAttentionHandler | None,
|
| 891 |
+
) -> torch.Tensor | None:
|
| 892 |
+
"""Generic forward for CASA uses for instance in `helium1_attention`"""
|
| 893 |
+
og_dtype = hidden_states.dtype
|
| 894 |
+
if self.is_streaming:
|
| 895 |
+
casa_handler = self.streaming_state.maybe_get_casa_handler(
|
| 896 |
+
casa_handler,
|
| 897 |
+
is_first_casa_layer=self.is_first_casa_layer,
|
| 898 |
+
num_queries=hidden_states.shape[1],
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
# Case of text-only samples at training (or inference when no handler was cached)
|
| 902 |
+
# in this case we just skip CASA so we return None (no casa_update)
|
| 903 |
+
if casa_handler is None:
|
| 904 |
+
return None
|
| 905 |
+
|
| 906 |
+
if self.is_streaming:
|
| 907 |
+
assert casa_handler.use_asymetric_qkv, (
|
| 908 |
+
"You should set `use_asymetric_qkv` to True during inference"
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
og_shape = hidden_states.shape
|
| 912 |
+
|
| 913 |
+
# Build Q inputs
|
| 914 |
+
if casa_handler.use_asymetric_qkv:
|
| 915 |
+
q_inputs = hidden_states.flatten(0, 1)[None, ...]
|
| 916 |
+
if casa_handler.attention_mask is not None:
|
| 917 |
+
q_inputs = q_inputs[:, casa_handler.attention_mask[:, -og_shape[1] :].flatten()]
|
| 918 |
+
else:
|
| 919 |
+
q_inputs = casa_handler.get_full_embeds(hidden_states, norm_fn=self.norm_fn)
|
| 920 |
+
|
| 921 |
+
# Case 1: Training or first inference step
|
| 922 |
+
if not self.is_streaming or self.streaming_state.offset == 0:
|
| 923 |
+
kv_inputs = casa_handler.get_full_embeds(hidden_states, norm_fn=self.norm_fn)
|
| 924 |
+
else:
|
| 925 |
+
# during streaming, the KV cache including image embeddings
|
| 926 |
+
# will be inserted later so for now we only update the incoming queries
|
| 927 |
+
kv_inputs = q_inputs
|
| 928 |
+
|
| 929 |
+
# Compute QKV for the blockwise attention
|
| 930 |
+
bs, total_seq_len = kv_inputs.shape[:2]
|
| 931 |
+
hidden_shape_q = (bs, q_inputs.shape[1], -1, self.head_dim)
|
| 932 |
+
hidden_shape_kv = (bs, total_seq_len, -1, self.head_dim)
|
| 933 |
+
|
| 934 |
+
if self.override_q_proj is None:
|
| 935 |
+
query_states = self.q_proj_casa(q_inputs).view(*hidden_shape_q)
|
| 936 |
+
else:
|
| 937 |
+
query_states = self.override_q_proj(q_inputs).view(*hidden_shape_q)
|
| 938 |
+
|
| 939 |
+
if self.override_k_proj is None:
|
| 940 |
+
key_states = self.k_proj_casa(kv_inputs).view(*hidden_shape_kv)
|
| 941 |
+
else:
|
| 942 |
+
key_states = self.override_k_proj(kv_inputs).view(*hidden_shape_kv)
|
| 943 |
+
|
| 944 |
+
if self.override_v_proj is None:
|
| 945 |
+
value_states = self.v_proj_casa(kv_inputs).view(*hidden_shape_kv)
|
| 946 |
+
else:
|
| 947 |
+
value_states = self.override_v_proj(kv_inputs).view(*hidden_shape_kv)
|
| 948 |
+
|
| 949 |
+
# Apply position embedding at the right offset
|
| 950 |
+
num_queries = 0
|
| 951 |
+
if self.streaming and self.streaming_state.offset > 0:
|
| 952 |
+
num_queries = og_shape[1]
|
| 953 |
+
|
| 954 |
+
query_states = self.apply_position_embeddings(
|
| 955 |
+
"q", query_states, num_queries=num_queries, casa_handler=casa_handler
|
| 956 |
+
)
|
| 957 |
+
key_states = self.apply_position_embeddings(
|
| 958 |
+
"kv", key_states, num_queries=num_queries, casa_handler=casa_handler
|
| 959 |
+
)
|
| 960 |
+
assert flash_attn_varlen_func is not None, (
|
| 961 |
+
"flash_attention is not installed but required for block-wise attention"
|
| 962 |
+
)
|
| 963 |
+
|
| 964 |
+
# Flashattention has different efficient implem for streaming
|
| 965 |
+
# In that case, the KV cache has to be batched and has been extended
|
| 966 |
+
# to accomodate the shape of ne the new updates
|
| 967 |
+
if self.is_streaming:
|
| 968 |
+
key_states, value_states = self.streaming_state.extend_kv(
|
| 969 |
+
key_states=key_states, value_states=value_states
|
| 970 |
+
)
|
| 971 |
+
if casa_handler.use_asymetric_qkv:
|
| 972 |
+
cu_seqlens_q = casa_handler.cu_seqlens_q
|
| 973 |
+
max_seqlen_q = casa_handler.max_seqlen_q
|
| 974 |
+
else:
|
| 975 |
+
cu_seqlens_q = casa_handler.cu_seqlens_kv
|
| 976 |
+
max_seqlen_q = casa_handler.max_seqlen_kv
|
| 977 |
+
assert cu_seqlens_q[-1] == query_states.shape[1], (
|
| 978 |
+
f"{cu_seqlens_q[-1]} != {query_states.shape[1]}"
|
| 979 |
+
)
|
| 980 |
+
assert casa_handler.cu_seqlens_kv[-1] == key_states.shape[1], (
|
| 981 |
+
f"{casa_handler.cu_seqlens_kv[-1]} != {key_states.shape[1]}"
|
| 982 |
+
)
|
| 983 |
+
# for quer
|
| 984 |
+
attn_output: torch.Tensor = flash_attn_varlen_func(
|
| 985 |
+
query_states[0].to(torch.bfloat16),
|
| 986 |
+
key_states[0].to(torch.bfloat16),
|
| 987 |
+
value_states[0].to(torch.bfloat16),
|
| 988 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 989 |
+
cu_seqlens_k=casa_handler.cu_seqlens_kv,
|
| 990 |
+
max_seqlen_q=max_seqlen_q,
|
| 991 |
+
max_seqlen_k=casa_handler.max_seqlen_kv,
|
| 992 |
+
dropout_p=0.0,
|
| 993 |
+
# softmax_scale=None, # defaults to 1/sqrt(d)
|
| 994 |
+
causal=True,
|
| 995 |
+
).to(og_dtype)
|
| 996 |
+
|
| 997 |
+
attn_output = attn_output.reshape(hidden_shape_q[1], -1).contiguous()
|
| 998 |
+
if self.override_o_proj is None:
|
| 999 |
+
attn_output = self.o_proj_casa(attn_output)
|
| 1000 |
+
else:
|
| 1001 |
+
attn_output = self.override_o_proj(attn_output)
|
| 1002 |
+
|
| 1003 |
+
attn_output = casa_handler.recover_text_embeds(
|
| 1004 |
+
attn_output, hidden_states, update_image_embeddings=self.config.xa_update_image_embeds
|
| 1005 |
+
)
|
| 1006 |
+
attn_output = attn_output.reshape(og_shape)
|
| 1007 |
+
|
| 1008 |
+
if self.is_streaming:
|
| 1009 |
+
self.streaming_state.offset += attn_output.shape[1]
|
| 1010 |
+
return attn_output
|
config.json
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoConfig": "configuration_qwen2_5vl_casa.Qwen2_5_VLCASAConfig",
|
| 5 |
+
"AutoModel": "modeling_qwen2_5vl_casa.V2Qwen2_5VL"
|
| 6 |
+
},
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"casa_attention": true,
|
| 9 |
+
"casa_delta_w": true,
|
| 10 |
+
"casa_use_asymetric_qkv": true,
|
| 11 |
+
"casa_windows": "images",
|
| 12 |
+
"eos_token_id": 151645,
|
| 13 |
+
"head_dim": 128,
|
| 14 |
+
"hidden_act": "silu",
|
| 15 |
+
"hidden_size": 2048,
|
| 16 |
+
"image_token_id": 151655,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 11008,
|
| 19 |
+
"max_position_embeddings": 128000,
|
| 20 |
+
"max_window_layers": 70,
|
| 21 |
+
"model_type": "CASA_Qwen_2_5_VL_3B_LiveCC",
|
| 22 |
+
"num_attention_heads": 16,
|
| 23 |
+
"num_hidden_layers": 36,
|
| 24 |
+
"num_key_value_heads": 2,
|
| 25 |
+
"rms_norm_eps": 1e-06,
|
| 26 |
+
"rope_scaling": {
|
| 27 |
+
"mrope_section": [
|
| 28 |
+
16,
|
| 29 |
+
24,
|
| 30 |
+
24
|
| 31 |
+
],
|
| 32 |
+
"rope_type": "default",
|
| 33 |
+
"type": "default"
|
| 34 |
+
},
|
| 35 |
+
"rope_theta": 1000000.0,
|
| 36 |
+
"sliding_window": 32768,
|
| 37 |
+
"tie_word_embeddings": true,
|
| 38 |
+
"torch_dtype": "bfloat16",
|
| 39 |
+
"transformers_version": "4.51.3",
|
| 40 |
+
"use_cache": true,
|
| 41 |
+
"use_sliding_window": false,
|
| 42 |
+
"video_token_id": 151656,
|
| 43 |
+
"vision_config": {
|
| 44 |
+
"depth": 32,
|
| 45 |
+
"fullatt_block_indexes": [
|
| 46 |
+
7,
|
| 47 |
+
15,
|
| 48 |
+
23,
|
| 49 |
+
31
|
| 50 |
+
],
|
| 51 |
+
"hidden_act": "silu",
|
| 52 |
+
"hidden_size": 1280,
|
| 53 |
+
"image_mean": [
|
| 54 |
+
0.48145466,
|
| 55 |
+
0.4578275,
|
| 56 |
+
0.40821073
|
| 57 |
+
],
|
| 58 |
+
"image_std": [
|
| 59 |
+
0.26862954,
|
| 60 |
+
0.26130258,
|
| 61 |
+
0.27577711
|
| 62 |
+
],
|
| 63 |
+
"in_channels": 3,
|
| 64 |
+
"in_chans": 3,
|
| 65 |
+
"intermediate_size": 3420,
|
| 66 |
+
"model_type": "qwen2_5_vl",
|
| 67 |
+
"num_heads": 16,
|
| 68 |
+
"out_dim": 2048,
|
| 69 |
+
"out_hidden_size": 2048,
|
| 70 |
+
"patch_size": 14,
|
| 71 |
+
"spatial_merge_size": 2,
|
| 72 |
+
"spatial_patch_size": 14,
|
| 73 |
+
"temporal_patch_size": 1,
|
| 74 |
+
"tokens_per_second": 2,
|
| 75 |
+
"window_size": 112
|
| 76 |
+
},
|
| 77 |
+
"vision_end_token_id": 151653,
|
| 78 |
+
"vision_start_token_id": 151652,
|
| 79 |
+
"vision_token_id": 151654,
|
| 80 |
+
"vocab_size": 151936,
|
| 81 |
+
"xa_layers": [
|
| 82 |
+
0,
|
| 83 |
+
1,
|
| 84 |
+
2,
|
| 85 |
+
3,
|
| 86 |
+
4,
|
| 87 |
+
5,
|
| 88 |
+
6,
|
| 89 |
+
7,
|
| 90 |
+
8,
|
| 91 |
+
9,
|
| 92 |
+
10,
|
| 93 |
+
11,
|
| 94 |
+
12,
|
| 95 |
+
13,
|
| 96 |
+
14,
|
| 97 |
+
15,
|
| 98 |
+
16,
|
| 99 |
+
17,
|
| 100 |
+
18,
|
| 101 |
+
19,
|
| 102 |
+
20,
|
| 103 |
+
21,
|
| 104 |
+
22,
|
| 105 |
+
23,
|
| 106 |
+
24,
|
| 107 |
+
25,
|
| 108 |
+
26,
|
| 109 |
+
27,
|
| 110 |
+
28,
|
| 111 |
+
29,
|
| 112 |
+
30,
|
| 113 |
+
31,
|
| 114 |
+
32,
|
| 115 |
+
33,
|
| 116 |
+
34,
|
| 117 |
+
35
|
| 118 |
+
],
|
| 119 |
+
"xa_norm_on_images": true,
|
| 120 |
+
"xa_order": "parallel",
|
| 121 |
+
"xa_update_image_embeds": false
|
| 122 |
+
}
|
configuration_qwen2_5vl_casa.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Literal
|
| 2 |
+
|
| 3 |
+
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import Qwen2_5_VLConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Qwen2_5_VLCASAConfig(Qwen2_5_VLConfig):
|
| 7 |
+
"""Qwen config augmented with CASA options"""
|
| 8 |
+
|
| 9 |
+
model_type = "qwen2_5vl_casa"
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
*args: Any,
|
| 14 |
+
# Common to all fusion mechanisms
|
| 15 |
+
xa_layers: None | tuple = None,
|
| 16 |
+
xa_order: Literal["ca_first", "parallel", "instead"] = "ca_first",
|
| 17 |
+
xa_norm_on_images: bool = False,
|
| 18 |
+
xa_update_image_embeds: bool = False,
|
| 19 |
+
# CASA
|
| 20 |
+
casa_attention: bool = False,
|
| 21 |
+
casa_delta_w: bool = False,
|
| 22 |
+
casa_windows: Literal["batch", "squashed", "images", "turn_based"] = "batch",
|
| 23 |
+
casa_use_asymetric_qkv: bool = True,
|
| 24 |
+
**kwargs: Any,
|
| 25 |
+
):
|
| 26 |
+
super().__init__(*args, **kwargs)
|
| 27 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
| 28 |
+
self.xa_layers = xa_layers
|
| 29 |
+
self.xa_order: Literal["ca_first", "parallel", "instead"] = xa_order
|
| 30 |
+
self.xa_norm_on_images = xa_norm_on_images
|
| 31 |
+
self.xa_update_image_embeds = xa_update_image_embeds
|
| 32 |
+
# CASA config
|
| 33 |
+
self.casa_attention = casa_attention
|
| 34 |
+
self.casa_delta_w = casa_delta_w
|
| 35 |
+
self.casa_windows: Literal["batch", "squashed", "images", "turn_based"] = casa_windows
|
| 36 |
+
self.casa_use_asymetric_qkv = casa_use_asymetric_qkv
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 715,
|
| 5 |
+
"transformers_version": "4.51.3"
|
| 6 |
+
}
|
image_encoder.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Qwen2.5VL encoder with delayed normalization"""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
| 6 |
+
Qwen2_5_VisionTransformerPretrainedModel,
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def prepare_for_qwen_encoder(
|
| 11 |
+
x: torch.Tensor | list[torch.Tensor], mean: torch.Tensor, std: torch.Tensor
|
| 12 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 13 |
+
"""
|
| 14 |
+
Preprocessing for Qwen encoder
|
| 15 |
+
Image mean and std come from processor.image_processor.image_mean and image_std
|
| 16 |
+
"""
|
| 17 |
+
grid_thw = torch.Tensor([[1, img.shape[0], img.shape[1]] for img in x]).to(x[0].device)
|
| 18 |
+
hws_flatten_shape = torch.prod(grid_thw, dim=-1)
|
| 19 |
+
x = torch.cat(
|
| 20 |
+
[img.reshape((int(hws_flatten_shape[idx].item()), -1)) for idx, img in enumerate(x)],
|
| 21 |
+
dim=0,
|
| 22 |
+
)
|
| 23 |
+
assert x.min() >= 0.0 and x.max() <= 1.0
|
| 24 |
+
og_shape = x.shape
|
| 25 |
+
x = rearrange(x, "L (c d) -> L c d", c=3)
|
| 26 |
+
x = (x - mean) / std
|
| 27 |
+
x = x.view(og_shape).to(torch.bfloat16)
|
| 28 |
+
return x, grid_thw
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Qwen25VLEncoder(torch.nn.Module):
|
| 32 |
+
"""Qwen2.5 VL encoder with pre/post processing to be compatible for
|
| 33 |
+
our CASA attention implementation"""
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
visual: "Qwen2_5_VisionTransformerPretrainedModel",
|
| 38 |
+
):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.visual = visual
|
| 41 |
+
self.image_mean = torch.tensor(self.visual.config.image_mean).view(1, 3, 1)
|
| 42 |
+
self.image_std = torch.tensor(self.visual.config.image_std).view(1, 3, 1)
|
| 43 |
+
|
| 44 |
+
def forward(
|
| 45 |
+
self, x: torch.Tensor | list[torch.Tensor]
|
| 46 |
+
) -> dict[str, torch.Tensor | list[torch.Tensor]]:
|
| 47 |
+
x, grid_thw = prepare_for_qwen_encoder(
|
| 48 |
+
x, mean=self.image_mean.to(x[0].device), std=self.image_std.to(x[0].device)
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
grid_thw = grid_thw.type(torch.int)
|
| 52 |
+
assert len(x) == grid_thw.prod(dim=1).sum()
|
| 53 |
+
out = self.visual(x, grid_thw=grid_thw)
|
| 54 |
+
|
| 55 |
+
split_sizes = (grid_thw.prod(dim=-1) // self.visual.spatial_merge_size**2).tolist()
|
| 56 |
+
embeds = list(torch.split(out, split_sizes, dim=0)) # Ni * (seq, C)
|
| 57 |
+
return {"image_embeds": embeds, "grid_thw": grid_thw}
|
language_qwen2_5vl_casa.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
from typing import Any, Callable, Literal, Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from transformers.cache_utils import Cache
|
| 6 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
| 8 |
+
Qwen2_5_VLDecoderLayer,
|
| 9 |
+
Qwen2_5_VLFlashAttention2,
|
| 10 |
+
rotate_half,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from .casa_attention import CASAAttention, CASAAttentionHandler
|
| 14 |
+
from .configuration_qwen2_5vl_casa import Qwen2_5_VLCASAConfig
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class QwenCASAAttentionHandler(CASAAttentionHandler):
|
| 18 |
+
"""Overrides CASAAttention with the right pos embedding computation for Qwen"""
|
| 19 |
+
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
*args: Any,
|
| 23 |
+
get_rope_index: Callable | None = None,
|
| 24 |
+
grid_thw: torch.Tensor | None = None,
|
| 25 |
+
position_ids_offset: int = 0,
|
| 26 |
+
**kwargs: Any,
|
| 27 |
+
):
|
| 28 |
+
assert get_rope_index is not None, "get_rope_index should be given for QwenCASA"
|
| 29 |
+
self.get_rope_index = partial(get_rope_index, image_grid_thw=grid_thw)
|
| 30 |
+
self.position_ids_offset = position_ids_offset
|
| 31 |
+
super().__init__(*args, **kwargs)
|
| 32 |
+
|
| 33 |
+
def compute_position_embeddings(
|
| 34 |
+
self,
|
| 35 |
+
rope_fn: Callable,
|
| 36 |
+
sample_lengths: list[int],
|
| 37 |
+
dummy_for_dtype_and_device: torch.Tensor,
|
| 38 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 39 |
+
"""Compute info required for position embeddings. Can be overriden e.g. for Qwen"""
|
| 40 |
+
# Here rope_fn is the "get_rope_index" function from the original mode
|
| 41 |
+
dummy_input_ids = torch.zeros(
|
| 42 |
+
(int(sum(sample_lengths)),), device=dummy_for_dtype_and_device.device, dtype=torch.long
|
| 43 |
+
)
|
| 44 |
+
# Set image token ids
|
| 45 |
+
dummy_input_ids[self.image_tokens_mask[:, 0]] = 151655
|
| 46 |
+
|
| 47 |
+
# required for the weird start of image tokens
|
| 48 |
+
# Highly recommended to use pre and post image tokens with Qwen
|
| 49 |
+
# Add vision start token ids (wherever a 151655 follows a 0)
|
| 50 |
+
start_of_images = torch.logical_and(
|
| 51 |
+
dummy_input_ids == 0,
|
| 52 |
+
torch.nn.functional.pad(dummy_input_ids[1:] == 151655, (0, 1), value=0),
|
| 53 |
+
)
|
| 54 |
+
dummy_input_ids[start_of_images] = 151652
|
| 55 |
+
|
| 56 |
+
# rebatch dummy input ids
|
| 57 |
+
padding_side = "left" if self.attention_mask is not None else "right"
|
| 58 |
+
s = list(torch.split(dummy_input_ids, self.full_batch_lengths))
|
| 59 |
+
mlen = max(_s.shape[0] for _s in s)
|
| 60 |
+
trims = [mlen - _s.shape[0] for _s in s]
|
| 61 |
+
dummy_input_ids = torch.stack(
|
| 62 |
+
[
|
| 63 |
+
torch.nn.functional.pad(
|
| 64 |
+
_s,
|
| 65 |
+
(
|
| 66 |
+
trims[i] if padding_side == "left" else 0,
|
| 67 |
+
trims[i] if padding_side == "right" else 0,
|
| 68 |
+
),
|
| 69 |
+
value=-1,
|
| 70 |
+
)
|
| 71 |
+
for i, _s in enumerate(s)
|
| 72 |
+
],
|
| 73 |
+
dim=0,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# We need to give attention map to rope_index in left padding
|
| 77 |
+
attention_mask = torch.ones_like(dummy_input_ids)
|
| 78 |
+
for i, t in enumerate(trims):
|
| 79 |
+
if padding_side == "right":
|
| 80 |
+
attention_mask[i, attention_mask.shape[-1] - t :] = 0
|
| 81 |
+
else:
|
| 82 |
+
attention_mask[i, :t] = 0
|
| 83 |
+
|
| 84 |
+
# compute pos embeds shape (3, bs, seq)
|
| 85 |
+
position_ids = (
|
| 86 |
+
self.get_rope_index(dummy_input_ids, attention_mask=attention_mask)[0]
|
| 87 |
+
+ self.position_ids_offset
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Compute pos-ebemds and recover flattened unpadded shape
|
| 91 |
+
cos, sin = rope_fn(dummy_for_dtype_and_device, position_ids)
|
| 92 |
+
# reflatten seq
|
| 93 |
+
if padding_side == "right":
|
| 94 |
+
cos = torch.cat(
|
| 95 |
+
[cos[:, i : i + 1, : cos.shape[2] - t, :] for i, t in enumerate(trims)], dim=2
|
| 96 |
+
)
|
| 97 |
+
sin = torch.cat(
|
| 98 |
+
[sin[:, i : i + 1, : sin.shape[2] - t, :] for i, t in enumerate(trims)], dim=2
|
| 99 |
+
)
|
| 100 |
+
else:
|
| 101 |
+
cos = torch.cat([cos[:, i : i + 1, t:, :] for i, t in enumerate(trims)], dim=2)
|
| 102 |
+
sin = torch.cat([sin[:, i : i + 1, t:, :] for i, t in enumerate(trims)], dim=2)
|
| 103 |
+
return cos, sin
|
| 104 |
+
|
| 105 |
+
def get_position_embedding(
|
| 106 |
+
self,
|
| 107 |
+
key: Literal["q", "kv"],
|
| 108 |
+
num_queries: int = 0,
|
| 109 |
+
) -> tuple[torch.Tensor, torch.Tensor] | None:
|
| 110 |
+
if self.position_embeds is None:
|
| 111 |
+
return None
|
| 112 |
+
cos, sin = self.position_embeds
|
| 113 |
+
# For Q, we only want the text-only posembeds
|
| 114 |
+
if key == "q":
|
| 115 |
+
cos, sin = (
|
| 116 |
+
cos[:, :, ~self.image_tokens_mask[:, 0]],
|
| 117 |
+
sin[:, :, ~self.image_tokens_mask[:, 0]],
|
| 118 |
+
)
|
| 119 |
+
elif key != "kv":
|
| 120 |
+
raise ValueError(f"Unknown key for position embedding {key}")
|
| 121 |
+
|
| 122 |
+
# Easy case: training or first step at inference: we use all the posembeds
|
| 123 |
+
if num_queries == 0:
|
| 124 |
+
return cos, sin
|
| 125 |
+
# If num queries is given, we need to trim for *every sample in the batch*
|
| 126 |
+
bls = self.full_batch_lengths if key == "kv" else self.batch_lengths
|
| 127 |
+
cos = [x[:, :, -num_queries:] for x in torch.split(cos, bls, dim=2)]
|
| 128 |
+
sin = [x[:, :, -num_queries:] for x in torch.split(sin, bls, dim=2)]
|
| 129 |
+
return torch.cat(cos, dim=2), torch.cat(sin, dim=2)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class QwenCASAAttention(CASAAttention):
|
| 133 |
+
"""A CASA Attention layer compatible with Qwen"""
|
| 134 |
+
|
| 135 |
+
def __init__(
|
| 136 |
+
self,
|
| 137 |
+
config: Qwen2_5_VLCASAConfig,
|
| 138 |
+
layer_idx: int | None,
|
| 139 |
+
self_attn: torch.nn.Module | None = None,
|
| 140 |
+
input_layernorm_fn: Callable | None = None,
|
| 141 |
+
):
|
| 142 |
+
# Only adding this init for typing purposes for the config
|
| 143 |
+
super().__init__(config, layer_idx, self_attn, input_layernorm_fn) # pyright: ignore[reportArgumentType]
|
| 144 |
+
assert config.rope_scaling is not None
|
| 145 |
+
self.mrope_section = config.rope_scaling["mrope_section"] * 2
|
| 146 |
+
|
| 147 |
+
def apply_position_embeddings(
|
| 148 |
+
self,
|
| 149 |
+
key: Literal["q", "kv"],
|
| 150 |
+
x: torch.Tensor, # (batch, seq_len, num_heads, head_dim)
|
| 151 |
+
casa_handler: CASAAttentionHandler | None,
|
| 152 |
+
num_queries: int = 0,
|
| 153 |
+
unsqueeze_dim: int = 1,
|
| 154 |
+
) -> torch.Tensor: # (batch, seq_len, num_heads, head_dim)
|
| 155 |
+
"""Apply position embeddings to query and key states"""
|
| 156 |
+
if casa_handler is not None:
|
| 157 |
+
posemb = casa_handler.get_position_embedding(key, num_queries=num_queries)
|
| 158 |
+
|
| 159 |
+
if posemb is not None:
|
| 160 |
+
x = x.transpose(1, 2).to(torch.float32)
|
| 161 |
+
cos, sin = posemb
|
| 162 |
+
cos = torch.cat(
|
| 163 |
+
[m[i % 3] for i, m in enumerate(cos.split(self.mrope_section, dim=-1))], dim=-1
|
| 164 |
+
).unsqueeze(unsqueeze_dim)
|
| 165 |
+
|
| 166 |
+
sin = torch.cat(
|
| 167 |
+
[m[i % 3] for i, m in enumerate(sin.split(self.mrope_section, dim=-1))], dim=-1
|
| 168 |
+
).unsqueeze(unsqueeze_dim)
|
| 169 |
+
|
| 170 |
+
x = (x * cos) + (rotate_half(x) * sin)
|
| 171 |
+
return x.transpose(1, 2)
|
| 172 |
+
return x
|
| 173 |
+
|
| 174 |
+
def init_from_config_proj(
|
| 175 |
+
self, key: Literal["q", "o", "k", "v"], config: PretrainedConfig
|
| 176 |
+
) -> torch.nn.Linear:
|
| 177 |
+
"""Follows modeling_qwen2_5_vl.py initialization"""
|
| 178 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 179 |
+
if key == "q":
|
| 180 |
+
return torch.nn.Linear(
|
| 181 |
+
config.hidden_size, config.num_attention_heads * head_dim, bias=True
|
| 182 |
+
)
|
| 183 |
+
if key in {"k", "v"}:
|
| 184 |
+
return torch.nn.Linear(
|
| 185 |
+
config.hidden_size, config.num_key_value_heads * head_dim, bias=True
|
| 186 |
+
)
|
| 187 |
+
if key == "o":
|
| 188 |
+
return torch.nn.Linear(
|
| 189 |
+
config.num_attention_heads * config.head_dim, config.hidden_size, bias=False
|
| 190 |
+
)
|
| 191 |
+
raise NotImplementedError(f"Unknown key {key}")
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class Qwen2_5_VLAttention_CASA(Qwen2_5_VLFlashAttention2):
|
| 195 |
+
"""
|
| 196 |
+
Qwen Attention with extra CASA Attention layer
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
def __init__(
|
| 200 |
+
self,
|
| 201 |
+
config: Qwen2_5_VLCASAConfig,
|
| 202 |
+
layer_idx: Optional[int] = None,
|
| 203 |
+
input_layernorm: torch.nn.Module | None = None,
|
| 204 |
+
):
|
| 205 |
+
super().__init__(config, layer_idx) # pyright: ignore[reportArgumentType]
|
| 206 |
+
self.casa_attn = QwenCASAAttention(
|
| 207 |
+
config,
|
| 208 |
+
layer_idx=layer_idx,
|
| 209 |
+
self_attn=self,
|
| 210 |
+
input_layernorm_fn=input_layernorm.forward if input_layernorm is not None else None,
|
| 211 |
+
)
|
| 212 |
+
self.casa_attention_handler: CASAAttentionHandler | None = None
|
| 213 |
+
|
| 214 |
+
@classmethod
|
| 215 |
+
def from_qwen2_5_vl_attention(
|
| 216 |
+
cls, attention: Qwen2_5_VLFlashAttention2, input_layernorm: torch.nn.Module | None
|
| 217 |
+
):
|
| 218 |
+
"""Init this layer from Qwen Attention layer"""
|
| 219 |
+
layer_idx = attention.layer_idx
|
| 220 |
+
assert layer_idx is not None
|
| 221 |
+
new_attention = cls(attention.config, layer_idx=layer_idx, input_layernorm=input_layernorm) # pyright: ignore
|
| 222 |
+
new_attention.load_state_dict(attention.state_dict(), strict=False)
|
| 223 |
+
return new_attention
|
| 224 |
+
|
| 225 |
+
def forward( # pyright: ignore[reportIncompatibleMethodOverride]
|
| 226 |
+
self,
|
| 227 |
+
hidden_states: torch.Tensor,
|
| 228 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 229 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 230 |
+
past_key_value: Optional[Cache] = None,
|
| 231 |
+
output_attentions: bool = False,
|
| 232 |
+
use_cache: bool = False,
|
| 233 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 234 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 235 |
+
):
|
| 236 |
+
casa_out: None | torch.Tensor = None
|
| 237 |
+
if self.casa_attn is not None and self.config.xa_order in {
|
| 238 |
+
"parallel",
|
| 239 |
+
"ca_first",
|
| 240 |
+
"instead",
|
| 241 |
+
}:
|
| 242 |
+
casa_out = self.casa_attn(
|
| 243 |
+
hidden_states=hidden_states,
|
| 244 |
+
casa_handler=self.casa_attention_handler,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
if self.config.xa_order == "instead":
|
| 248 |
+
return casa_out, None, None
|
| 249 |
+
|
| 250 |
+
if self.config.xa_order == "ca_first" and casa_out is not None:
|
| 251 |
+
hidden_states, casa_out = casa_out, None
|
| 252 |
+
|
| 253 |
+
attn_output, attn_weights, past_key_values = super().forward(
|
| 254 |
+
hidden_states,
|
| 255 |
+
attention_mask,
|
| 256 |
+
position_ids,
|
| 257 |
+
past_key_value,
|
| 258 |
+
output_attentions,
|
| 259 |
+
use_cache,
|
| 260 |
+
cache_position,
|
| 261 |
+
position_embeddings,
|
| 262 |
+
)
|
| 263 |
+
if self.config.xa_order == "parallel" and casa_out is not None:
|
| 264 |
+
attn_output = casa_out + attn_output
|
| 265 |
+
return attn_output, attn_weights, past_key_values
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def add_casa_layers(m: torch.nn.Module, xa_layers: tuple[int, ...] | None):
|
| 269 |
+
"""Replace Attention layer by CASA Attention layer as needed"""
|
| 270 |
+
if isinstance(m, Qwen2_5_VLDecoderLayer):
|
| 271 |
+
layer_idx = m.self_attn.layer_idx
|
| 272 |
+
assert layer_idx is not None
|
| 273 |
+
if xa_layers is None or len(xa_layers) == 0 or layer_idx in xa_layers:
|
| 274 |
+
m.self_attn = Qwen2_5_VLAttention_CASA.from_qwen2_5_vl_attention(
|
| 275 |
+
m.self_attn, input_layernorm=m.input_layernorm
|
| 276 |
+
)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:959dc60fd4e5974349a1e23b79d33edd765bbcb911ea29ae594e4ba1d2872188
|
| 3 |
+
size 4961226720
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aab471816213f5a9cf2b2214de75a7e1d17d9b9371d75e12a8481066db458f18
|
| 3 |
+
size 4993905448
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32abd001c7514589845599d3cc64d739bf9c57acb548c4099cbeab7be9e57f5a
|
| 3 |
+
size 4994485840
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8943ad7ef101666fb28d9b0ac5b27cd1c8381c2d755ce0ddac1f9c6dea33de2d
|
| 3 |
+
size 1425314512
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,1083 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16374804480
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"image_prefix.visual.blocks.0.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 7 |
+
"image_prefix.visual.blocks.0.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 8 |
+
"image_prefix.visual.blocks.0.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 9 |
+
"image_prefix.visual.blocks.0.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 10 |
+
"image_prefix.visual.blocks.0.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 11 |
+
"image_prefix.visual.blocks.0.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 12 |
+
"image_prefix.visual.blocks.0.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 13 |
+
"image_prefix.visual.blocks.0.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 14 |
+
"image_prefix.visual.blocks.0.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 15 |
+
"image_prefix.visual.blocks.0.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 16 |
+
"image_prefix.visual.blocks.0.norm1.weight": "model-00003-of-00004.safetensors",
|
| 17 |
+
"image_prefix.visual.blocks.0.norm2.weight": "model-00003-of-00004.safetensors",
|
| 18 |
+
"image_prefix.visual.blocks.1.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 19 |
+
"image_prefix.visual.blocks.1.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 20 |
+
"image_prefix.visual.blocks.1.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 21 |
+
"image_prefix.visual.blocks.1.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 22 |
+
"image_prefix.visual.blocks.1.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 23 |
+
"image_prefix.visual.blocks.1.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 24 |
+
"image_prefix.visual.blocks.1.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 25 |
+
"image_prefix.visual.blocks.1.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 26 |
+
"image_prefix.visual.blocks.1.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 27 |
+
"image_prefix.visual.blocks.1.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 28 |
+
"image_prefix.visual.blocks.1.norm1.weight": "model-00003-of-00004.safetensors",
|
| 29 |
+
"image_prefix.visual.blocks.1.norm2.weight": "model-00003-of-00004.safetensors",
|
| 30 |
+
"image_prefix.visual.blocks.10.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 31 |
+
"image_prefix.visual.blocks.10.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 32 |
+
"image_prefix.visual.blocks.10.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 33 |
+
"image_prefix.visual.blocks.10.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 34 |
+
"image_prefix.visual.blocks.10.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 35 |
+
"image_prefix.visual.blocks.10.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 36 |
+
"image_prefix.visual.blocks.10.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 37 |
+
"image_prefix.visual.blocks.10.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 38 |
+
"image_prefix.visual.blocks.10.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 39 |
+
"image_prefix.visual.blocks.10.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 40 |
+
"image_prefix.visual.blocks.10.norm1.weight": "model-00003-of-00004.safetensors",
|
| 41 |
+
"image_prefix.visual.blocks.10.norm2.weight": "model-00003-of-00004.safetensors",
|
| 42 |
+
"image_prefix.visual.blocks.11.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 43 |
+
"image_prefix.visual.blocks.11.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 44 |
+
"image_prefix.visual.blocks.11.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 45 |
+
"image_prefix.visual.blocks.11.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 46 |
+
"image_prefix.visual.blocks.11.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 47 |
+
"image_prefix.visual.blocks.11.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 48 |
+
"image_prefix.visual.blocks.11.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 49 |
+
"image_prefix.visual.blocks.11.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 50 |
+
"image_prefix.visual.blocks.11.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 51 |
+
"image_prefix.visual.blocks.11.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 52 |
+
"image_prefix.visual.blocks.11.norm1.weight": "model-00003-of-00004.safetensors",
|
| 53 |
+
"image_prefix.visual.blocks.11.norm2.weight": "model-00003-of-00004.safetensors",
|
| 54 |
+
"image_prefix.visual.blocks.12.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 55 |
+
"image_prefix.visual.blocks.12.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 56 |
+
"image_prefix.visual.blocks.12.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 57 |
+
"image_prefix.visual.blocks.12.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 58 |
+
"image_prefix.visual.blocks.12.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 59 |
+
"image_prefix.visual.blocks.12.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 60 |
+
"image_prefix.visual.blocks.12.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 61 |
+
"image_prefix.visual.blocks.12.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 62 |
+
"image_prefix.visual.blocks.12.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 63 |
+
"image_prefix.visual.blocks.12.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 64 |
+
"image_prefix.visual.blocks.12.norm1.weight": "model-00003-of-00004.safetensors",
|
| 65 |
+
"image_prefix.visual.blocks.12.norm2.weight": "model-00003-of-00004.safetensors",
|
| 66 |
+
"image_prefix.visual.blocks.13.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 67 |
+
"image_prefix.visual.blocks.13.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 68 |
+
"image_prefix.visual.blocks.13.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 69 |
+
"image_prefix.visual.blocks.13.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 70 |
+
"image_prefix.visual.blocks.13.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 71 |
+
"image_prefix.visual.blocks.13.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 72 |
+
"image_prefix.visual.blocks.13.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 73 |
+
"image_prefix.visual.blocks.13.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 74 |
+
"image_prefix.visual.blocks.13.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 75 |
+
"image_prefix.visual.blocks.13.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 76 |
+
"image_prefix.visual.blocks.13.norm1.weight": "model-00003-of-00004.safetensors",
|
| 77 |
+
"image_prefix.visual.blocks.13.norm2.weight": "model-00003-of-00004.safetensors",
|
| 78 |
+
"image_prefix.visual.blocks.14.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 79 |
+
"image_prefix.visual.blocks.14.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 80 |
+
"image_prefix.visual.blocks.14.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 81 |
+
"image_prefix.visual.blocks.14.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 82 |
+
"image_prefix.visual.blocks.14.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 83 |
+
"image_prefix.visual.blocks.14.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 84 |
+
"image_prefix.visual.blocks.14.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 85 |
+
"image_prefix.visual.blocks.14.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 86 |
+
"image_prefix.visual.blocks.14.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 87 |
+
"image_prefix.visual.blocks.14.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 88 |
+
"image_prefix.visual.blocks.14.norm1.weight": "model-00003-of-00004.safetensors",
|
| 89 |
+
"image_prefix.visual.blocks.14.norm2.weight": "model-00003-of-00004.safetensors",
|
| 90 |
+
"image_prefix.visual.blocks.15.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 91 |
+
"image_prefix.visual.blocks.15.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 92 |
+
"image_prefix.visual.blocks.15.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 93 |
+
"image_prefix.visual.blocks.15.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 94 |
+
"image_prefix.visual.blocks.15.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 95 |
+
"image_prefix.visual.blocks.15.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 96 |
+
"image_prefix.visual.blocks.15.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 97 |
+
"image_prefix.visual.blocks.15.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 98 |
+
"image_prefix.visual.blocks.15.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 99 |
+
"image_prefix.visual.blocks.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 100 |
+
"image_prefix.visual.blocks.15.norm1.weight": "model-00003-of-00004.safetensors",
|
| 101 |
+
"image_prefix.visual.blocks.15.norm2.weight": "model-00003-of-00004.safetensors",
|
| 102 |
+
"image_prefix.visual.blocks.16.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 103 |
+
"image_prefix.visual.blocks.16.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 104 |
+
"image_prefix.visual.blocks.16.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 105 |
+
"image_prefix.visual.blocks.16.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 106 |
+
"image_prefix.visual.blocks.16.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 107 |
+
"image_prefix.visual.blocks.16.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 108 |
+
"image_prefix.visual.blocks.16.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 109 |
+
"image_prefix.visual.blocks.16.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 110 |
+
"image_prefix.visual.blocks.16.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 111 |
+
"image_prefix.visual.blocks.16.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 112 |
+
"image_prefix.visual.blocks.16.norm1.weight": "model-00004-of-00004.safetensors",
|
| 113 |
+
"image_prefix.visual.blocks.16.norm2.weight": "model-00004-of-00004.safetensors",
|
| 114 |
+
"image_prefix.visual.blocks.17.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 115 |
+
"image_prefix.visual.blocks.17.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 116 |
+
"image_prefix.visual.blocks.17.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 117 |
+
"image_prefix.visual.blocks.17.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 118 |
+
"image_prefix.visual.blocks.17.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 119 |
+
"image_prefix.visual.blocks.17.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 120 |
+
"image_prefix.visual.blocks.17.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 121 |
+
"image_prefix.visual.blocks.17.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 122 |
+
"image_prefix.visual.blocks.17.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 123 |
+
"image_prefix.visual.blocks.17.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 124 |
+
"image_prefix.visual.blocks.17.norm1.weight": "model-00004-of-00004.safetensors",
|
| 125 |
+
"image_prefix.visual.blocks.17.norm2.weight": "model-00004-of-00004.safetensors",
|
| 126 |
+
"image_prefix.visual.blocks.18.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 127 |
+
"image_prefix.visual.blocks.18.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 128 |
+
"image_prefix.visual.blocks.18.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 129 |
+
"image_prefix.visual.blocks.18.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 130 |
+
"image_prefix.visual.blocks.18.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 131 |
+
"image_prefix.visual.blocks.18.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 132 |
+
"image_prefix.visual.blocks.18.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 133 |
+
"image_prefix.visual.blocks.18.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 134 |
+
"image_prefix.visual.blocks.18.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 135 |
+
"image_prefix.visual.blocks.18.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 136 |
+
"image_prefix.visual.blocks.18.norm1.weight": "model-00004-of-00004.safetensors",
|
| 137 |
+
"image_prefix.visual.blocks.18.norm2.weight": "model-00004-of-00004.safetensors",
|
| 138 |
+
"image_prefix.visual.blocks.19.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 139 |
+
"image_prefix.visual.blocks.19.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 140 |
+
"image_prefix.visual.blocks.19.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 141 |
+
"image_prefix.visual.blocks.19.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 142 |
+
"image_prefix.visual.blocks.19.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 143 |
+
"image_prefix.visual.blocks.19.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 144 |
+
"image_prefix.visual.blocks.19.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 145 |
+
"image_prefix.visual.blocks.19.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 146 |
+
"image_prefix.visual.blocks.19.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 147 |
+
"image_prefix.visual.blocks.19.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 148 |
+
"image_prefix.visual.blocks.19.norm1.weight": "model-00004-of-00004.safetensors",
|
| 149 |
+
"image_prefix.visual.blocks.19.norm2.weight": "model-00004-of-00004.safetensors",
|
| 150 |
+
"image_prefix.visual.blocks.2.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"image_prefix.visual.blocks.2.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"image_prefix.visual.blocks.2.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 153 |
+
"image_prefix.visual.blocks.2.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"image_prefix.visual.blocks.2.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 155 |
+
"image_prefix.visual.blocks.2.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"image_prefix.visual.blocks.2.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 157 |
+
"image_prefix.visual.blocks.2.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"image_prefix.visual.blocks.2.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 159 |
+
"image_prefix.visual.blocks.2.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"image_prefix.visual.blocks.2.norm1.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"image_prefix.visual.blocks.2.norm2.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"image_prefix.visual.blocks.20.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 163 |
+
"image_prefix.visual.blocks.20.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 164 |
+
"image_prefix.visual.blocks.20.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 165 |
+
"image_prefix.visual.blocks.20.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 166 |
+
"image_prefix.visual.blocks.20.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 167 |
+
"image_prefix.visual.blocks.20.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 168 |
+
"image_prefix.visual.blocks.20.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 169 |
+
"image_prefix.visual.blocks.20.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 170 |
+
"image_prefix.visual.blocks.20.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 171 |
+
"image_prefix.visual.blocks.20.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 172 |
+
"image_prefix.visual.blocks.20.norm1.weight": "model-00004-of-00004.safetensors",
|
| 173 |
+
"image_prefix.visual.blocks.20.norm2.weight": "model-00004-of-00004.safetensors",
|
| 174 |
+
"image_prefix.visual.blocks.21.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 175 |
+
"image_prefix.visual.blocks.21.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 176 |
+
"image_prefix.visual.blocks.21.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 177 |
+
"image_prefix.visual.blocks.21.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 178 |
+
"image_prefix.visual.blocks.21.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 179 |
+
"image_prefix.visual.blocks.21.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 180 |
+
"image_prefix.visual.blocks.21.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 181 |
+
"image_prefix.visual.blocks.21.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 182 |
+
"image_prefix.visual.blocks.21.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 183 |
+
"image_prefix.visual.blocks.21.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 184 |
+
"image_prefix.visual.blocks.21.norm1.weight": "model-00004-of-00004.safetensors",
|
| 185 |
+
"image_prefix.visual.blocks.21.norm2.weight": "model-00004-of-00004.safetensors",
|
| 186 |
+
"image_prefix.visual.blocks.22.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 187 |
+
"image_prefix.visual.blocks.22.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 188 |
+
"image_prefix.visual.blocks.22.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 189 |
+
"image_prefix.visual.blocks.22.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 190 |
+
"image_prefix.visual.blocks.22.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 191 |
+
"image_prefix.visual.blocks.22.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 192 |
+
"image_prefix.visual.blocks.22.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 193 |
+
"image_prefix.visual.blocks.22.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 194 |
+
"image_prefix.visual.blocks.22.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 195 |
+
"image_prefix.visual.blocks.22.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 196 |
+
"image_prefix.visual.blocks.22.norm1.weight": "model-00004-of-00004.safetensors",
|
| 197 |
+
"image_prefix.visual.blocks.22.norm2.weight": "model-00004-of-00004.safetensors",
|
| 198 |
+
"image_prefix.visual.blocks.23.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 199 |
+
"image_prefix.visual.blocks.23.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 200 |
+
"image_prefix.visual.blocks.23.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 201 |
+
"image_prefix.visual.blocks.23.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 202 |
+
"image_prefix.visual.blocks.23.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 203 |
+
"image_prefix.visual.blocks.23.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 204 |
+
"image_prefix.visual.blocks.23.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 205 |
+
"image_prefix.visual.blocks.23.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 206 |
+
"image_prefix.visual.blocks.23.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 207 |
+
"image_prefix.visual.blocks.23.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 208 |
+
"image_prefix.visual.blocks.23.norm1.weight": "model-00004-of-00004.safetensors",
|
| 209 |
+
"image_prefix.visual.blocks.23.norm2.weight": "model-00004-of-00004.safetensors",
|
| 210 |
+
"image_prefix.visual.blocks.24.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 211 |
+
"image_prefix.visual.blocks.24.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 212 |
+
"image_prefix.visual.blocks.24.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 213 |
+
"image_prefix.visual.blocks.24.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 214 |
+
"image_prefix.visual.blocks.24.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 215 |
+
"image_prefix.visual.blocks.24.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 216 |
+
"image_prefix.visual.blocks.24.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 217 |
+
"image_prefix.visual.blocks.24.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 218 |
+
"image_prefix.visual.blocks.24.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 219 |
+
"image_prefix.visual.blocks.24.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 220 |
+
"image_prefix.visual.blocks.24.norm1.weight": "model-00004-of-00004.safetensors",
|
| 221 |
+
"image_prefix.visual.blocks.24.norm2.weight": "model-00004-of-00004.safetensors",
|
| 222 |
+
"image_prefix.visual.blocks.25.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 223 |
+
"image_prefix.visual.blocks.25.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 224 |
+
"image_prefix.visual.blocks.25.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 225 |
+
"image_prefix.visual.blocks.25.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 226 |
+
"image_prefix.visual.blocks.25.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 227 |
+
"image_prefix.visual.blocks.25.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 228 |
+
"image_prefix.visual.blocks.25.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 229 |
+
"image_prefix.visual.blocks.25.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 230 |
+
"image_prefix.visual.blocks.25.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 231 |
+
"image_prefix.visual.blocks.25.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 232 |
+
"image_prefix.visual.blocks.25.norm1.weight": "model-00004-of-00004.safetensors",
|
| 233 |
+
"image_prefix.visual.blocks.25.norm2.weight": "model-00004-of-00004.safetensors",
|
| 234 |
+
"image_prefix.visual.blocks.26.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 235 |
+
"image_prefix.visual.blocks.26.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 236 |
+
"image_prefix.visual.blocks.26.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 237 |
+
"image_prefix.visual.blocks.26.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"image_prefix.visual.blocks.26.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 239 |
+
"image_prefix.visual.blocks.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 240 |
+
"image_prefix.visual.blocks.26.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 241 |
+
"image_prefix.visual.blocks.26.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 242 |
+
"image_prefix.visual.blocks.26.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 243 |
+
"image_prefix.visual.blocks.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 244 |
+
"image_prefix.visual.blocks.26.norm1.weight": "model-00004-of-00004.safetensors",
|
| 245 |
+
"image_prefix.visual.blocks.26.norm2.weight": "model-00004-of-00004.safetensors",
|
| 246 |
+
"image_prefix.visual.blocks.27.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 247 |
+
"image_prefix.visual.blocks.27.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 248 |
+
"image_prefix.visual.blocks.27.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 249 |
+
"image_prefix.visual.blocks.27.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 250 |
+
"image_prefix.visual.blocks.27.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 251 |
+
"image_prefix.visual.blocks.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 252 |
+
"image_prefix.visual.blocks.27.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 253 |
+
"image_prefix.visual.blocks.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 254 |
+
"image_prefix.visual.blocks.27.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 255 |
+
"image_prefix.visual.blocks.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 256 |
+
"image_prefix.visual.blocks.27.norm1.weight": "model-00004-of-00004.safetensors",
|
| 257 |
+
"image_prefix.visual.blocks.27.norm2.weight": "model-00004-of-00004.safetensors",
|
| 258 |
+
"image_prefix.visual.blocks.28.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 259 |
+
"image_prefix.visual.blocks.28.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 260 |
+
"image_prefix.visual.blocks.28.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 261 |
+
"image_prefix.visual.blocks.28.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 262 |
+
"image_prefix.visual.blocks.28.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 263 |
+
"image_prefix.visual.blocks.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 264 |
+
"image_prefix.visual.blocks.28.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 265 |
+
"image_prefix.visual.blocks.28.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 266 |
+
"image_prefix.visual.blocks.28.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 267 |
+
"image_prefix.visual.blocks.28.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 268 |
+
"image_prefix.visual.blocks.28.norm1.weight": "model-00004-of-00004.safetensors",
|
| 269 |
+
"image_prefix.visual.blocks.28.norm2.weight": "model-00004-of-00004.safetensors",
|
| 270 |
+
"image_prefix.visual.blocks.29.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 271 |
+
"image_prefix.visual.blocks.29.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 272 |
+
"image_prefix.visual.blocks.29.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 273 |
+
"image_prefix.visual.blocks.29.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 274 |
+
"image_prefix.visual.blocks.29.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 275 |
+
"image_prefix.visual.blocks.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 276 |
+
"image_prefix.visual.blocks.29.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 277 |
+
"image_prefix.visual.blocks.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 278 |
+
"image_prefix.visual.blocks.29.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 279 |
+
"image_prefix.visual.blocks.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 280 |
+
"image_prefix.visual.blocks.29.norm1.weight": "model-00004-of-00004.safetensors",
|
| 281 |
+
"image_prefix.visual.blocks.29.norm2.weight": "model-00004-of-00004.safetensors",
|
| 282 |
+
"image_prefix.visual.blocks.3.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 283 |
+
"image_prefix.visual.blocks.3.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 284 |
+
"image_prefix.visual.blocks.3.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 285 |
+
"image_prefix.visual.blocks.3.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 286 |
+
"image_prefix.visual.blocks.3.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 287 |
+
"image_prefix.visual.blocks.3.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 288 |
+
"image_prefix.visual.blocks.3.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 289 |
+
"image_prefix.visual.blocks.3.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 290 |
+
"image_prefix.visual.blocks.3.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 291 |
+
"image_prefix.visual.blocks.3.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 292 |
+
"image_prefix.visual.blocks.3.norm1.weight": "model-00003-of-00004.safetensors",
|
| 293 |
+
"image_prefix.visual.blocks.3.norm2.weight": "model-00003-of-00004.safetensors",
|
| 294 |
+
"image_prefix.visual.blocks.30.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 295 |
+
"image_prefix.visual.blocks.30.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 296 |
+
"image_prefix.visual.blocks.30.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 297 |
+
"image_prefix.visual.blocks.30.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 298 |
+
"image_prefix.visual.blocks.30.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 299 |
+
"image_prefix.visual.blocks.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 300 |
+
"image_prefix.visual.blocks.30.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 301 |
+
"image_prefix.visual.blocks.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 302 |
+
"image_prefix.visual.blocks.30.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 303 |
+
"image_prefix.visual.blocks.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 304 |
+
"image_prefix.visual.blocks.30.norm1.weight": "model-00004-of-00004.safetensors",
|
| 305 |
+
"image_prefix.visual.blocks.30.norm2.weight": "model-00004-of-00004.safetensors",
|
| 306 |
+
"image_prefix.visual.blocks.31.attn.proj.bias": "model-00004-of-00004.safetensors",
|
| 307 |
+
"image_prefix.visual.blocks.31.attn.proj.weight": "model-00004-of-00004.safetensors",
|
| 308 |
+
"image_prefix.visual.blocks.31.attn.qkv.bias": "model-00004-of-00004.safetensors",
|
| 309 |
+
"image_prefix.visual.blocks.31.attn.qkv.weight": "model-00004-of-00004.safetensors",
|
| 310 |
+
"image_prefix.visual.blocks.31.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 311 |
+
"image_prefix.visual.blocks.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 312 |
+
"image_prefix.visual.blocks.31.mlp.gate_proj.bias": "model-00004-of-00004.safetensors",
|
| 313 |
+
"image_prefix.visual.blocks.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 314 |
+
"image_prefix.visual.blocks.31.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 315 |
+
"image_prefix.visual.blocks.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 316 |
+
"image_prefix.visual.blocks.31.norm1.weight": "model-00004-of-00004.safetensors",
|
| 317 |
+
"image_prefix.visual.blocks.31.norm2.weight": "model-00004-of-00004.safetensors",
|
| 318 |
+
"image_prefix.visual.blocks.4.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 319 |
+
"image_prefix.visual.blocks.4.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 320 |
+
"image_prefix.visual.blocks.4.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 321 |
+
"image_prefix.visual.blocks.4.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 322 |
+
"image_prefix.visual.blocks.4.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 323 |
+
"image_prefix.visual.blocks.4.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 324 |
+
"image_prefix.visual.blocks.4.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 325 |
+
"image_prefix.visual.blocks.4.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 326 |
+
"image_prefix.visual.blocks.4.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 327 |
+
"image_prefix.visual.blocks.4.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 328 |
+
"image_prefix.visual.blocks.4.norm1.weight": "model-00003-of-00004.safetensors",
|
| 329 |
+
"image_prefix.visual.blocks.4.norm2.weight": "model-00003-of-00004.safetensors",
|
| 330 |
+
"image_prefix.visual.blocks.5.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 331 |
+
"image_prefix.visual.blocks.5.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 332 |
+
"image_prefix.visual.blocks.5.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 333 |
+
"image_prefix.visual.blocks.5.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 334 |
+
"image_prefix.visual.blocks.5.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 335 |
+
"image_prefix.visual.blocks.5.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 336 |
+
"image_prefix.visual.blocks.5.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 337 |
+
"image_prefix.visual.blocks.5.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 338 |
+
"image_prefix.visual.blocks.5.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 339 |
+
"image_prefix.visual.blocks.5.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 340 |
+
"image_prefix.visual.blocks.5.norm1.weight": "model-00003-of-00004.safetensors",
|
| 341 |
+
"image_prefix.visual.blocks.5.norm2.weight": "model-00003-of-00004.safetensors",
|
| 342 |
+
"image_prefix.visual.blocks.6.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 343 |
+
"image_prefix.visual.blocks.6.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 344 |
+
"image_prefix.visual.blocks.6.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 345 |
+
"image_prefix.visual.blocks.6.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 346 |
+
"image_prefix.visual.blocks.6.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 347 |
+
"image_prefix.visual.blocks.6.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 348 |
+
"image_prefix.visual.blocks.6.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 349 |
+
"image_prefix.visual.blocks.6.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 350 |
+
"image_prefix.visual.blocks.6.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 351 |
+
"image_prefix.visual.blocks.6.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 352 |
+
"image_prefix.visual.blocks.6.norm1.weight": "model-00003-of-00004.safetensors",
|
| 353 |
+
"image_prefix.visual.blocks.6.norm2.weight": "model-00003-of-00004.safetensors",
|
| 354 |
+
"image_prefix.visual.blocks.7.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 355 |
+
"image_prefix.visual.blocks.7.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 356 |
+
"image_prefix.visual.blocks.7.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 357 |
+
"image_prefix.visual.blocks.7.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 358 |
+
"image_prefix.visual.blocks.7.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 359 |
+
"image_prefix.visual.blocks.7.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 360 |
+
"image_prefix.visual.blocks.7.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 361 |
+
"image_prefix.visual.blocks.7.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 362 |
+
"image_prefix.visual.blocks.7.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 363 |
+
"image_prefix.visual.blocks.7.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 364 |
+
"image_prefix.visual.blocks.7.norm1.weight": "model-00003-of-00004.safetensors",
|
| 365 |
+
"image_prefix.visual.blocks.7.norm2.weight": "model-00003-of-00004.safetensors",
|
| 366 |
+
"image_prefix.visual.blocks.8.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 367 |
+
"image_prefix.visual.blocks.8.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 368 |
+
"image_prefix.visual.blocks.8.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 369 |
+
"image_prefix.visual.blocks.8.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 370 |
+
"image_prefix.visual.blocks.8.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 371 |
+
"image_prefix.visual.blocks.8.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 372 |
+
"image_prefix.visual.blocks.8.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 373 |
+
"image_prefix.visual.blocks.8.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 374 |
+
"image_prefix.visual.blocks.8.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 375 |
+
"image_prefix.visual.blocks.8.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 376 |
+
"image_prefix.visual.blocks.8.norm1.weight": "model-00003-of-00004.safetensors",
|
| 377 |
+
"image_prefix.visual.blocks.8.norm2.weight": "model-00003-of-00004.safetensors",
|
| 378 |
+
"image_prefix.visual.blocks.9.attn.proj.bias": "model-00003-of-00004.safetensors",
|
| 379 |
+
"image_prefix.visual.blocks.9.attn.proj.weight": "model-00003-of-00004.safetensors",
|
| 380 |
+
"image_prefix.visual.blocks.9.attn.qkv.bias": "model-00003-of-00004.safetensors",
|
| 381 |
+
"image_prefix.visual.blocks.9.attn.qkv.weight": "model-00003-of-00004.safetensors",
|
| 382 |
+
"image_prefix.visual.blocks.9.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 383 |
+
"image_prefix.visual.blocks.9.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 384 |
+
"image_prefix.visual.blocks.9.mlp.gate_proj.bias": "model-00003-of-00004.safetensors",
|
| 385 |
+
"image_prefix.visual.blocks.9.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 386 |
+
"image_prefix.visual.blocks.9.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 387 |
+
"image_prefix.visual.blocks.9.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 388 |
+
"image_prefix.visual.blocks.9.norm1.weight": "model-00003-of-00004.safetensors",
|
| 389 |
+
"image_prefix.visual.blocks.9.norm2.weight": "model-00003-of-00004.safetensors",
|
| 390 |
+
"image_prefix.visual.merger.ln_q.weight": "model-00004-of-00004.safetensors",
|
| 391 |
+
"image_prefix.visual.merger.mlp.0.bias": "model-00004-of-00004.safetensors",
|
| 392 |
+
"image_prefix.visual.merger.mlp.0.weight": "model-00004-of-00004.safetensors",
|
| 393 |
+
"image_prefix.visual.merger.mlp.2.bias": "model-00004-of-00004.safetensors",
|
| 394 |
+
"image_prefix.visual.merger.mlp.2.weight": "model-00004-of-00004.safetensors",
|
| 395 |
+
"image_prefix.visual.patch_embed.proj.weight": "model-00003-of-00004.safetensors",
|
| 396 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 397 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 398 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 400 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 402 |
+
"model.layers.0.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 403 |
+
"model.layers.0.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 404 |
+
"model.layers.0.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 405 |
+
"model.layers.0.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 406 |
+
"model.layers.0.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"model.layers.0.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 408 |
+
"model.layers.0.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 410 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 411 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 412 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 413 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 414 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 415 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 416 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 417 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 418 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 419 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 420 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"model.layers.1.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"model.layers.1.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"model.layers.1.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 424 |
+
"model.layers.1.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 425 |
+
"model.layers.1.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 426 |
+
"model.layers.1.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 427 |
+
"model.layers.1.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 428 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 429 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 430 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 431 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 432 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 433 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 434 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 436 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 437 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 438 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 439 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 440 |
+
"model.layers.10.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 441 |
+
"model.layers.10.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 442 |
+
"model.layers.10.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"model.layers.10.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 444 |
+
"model.layers.10.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 445 |
+
"model.layers.10.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 446 |
+
"model.layers.10.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 447 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 448 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 449 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 450 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 451 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 452 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 453 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 454 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 455 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 456 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 457 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 458 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 459 |
+
"model.layers.11.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 460 |
+
"model.layers.11.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 461 |
+
"model.layers.11.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 462 |
+
"model.layers.11.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 463 |
+
"model.layers.11.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 464 |
+
"model.layers.11.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 465 |
+
"model.layers.11.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 466 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 467 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 468 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 469 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 470 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 471 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 472 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 473 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 474 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 475 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 476 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 477 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 478 |
+
"model.layers.12.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 479 |
+
"model.layers.12.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 480 |
+
"model.layers.12.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 481 |
+
"model.layers.12.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 482 |
+
"model.layers.12.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 483 |
+
"model.layers.12.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 484 |
+
"model.layers.12.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 485 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 486 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 487 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 488 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 489 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 490 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 491 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 492 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 493 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 494 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 495 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 496 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 497 |
+
"model.layers.13.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 498 |
+
"model.layers.13.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 499 |
+
"model.layers.13.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 500 |
+
"model.layers.13.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 501 |
+
"model.layers.13.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 502 |
+
"model.layers.13.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 503 |
+
"model.layers.13.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 504 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 505 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 506 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 507 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 508 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 509 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 510 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 511 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 512 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 513 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 514 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 515 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 516 |
+
"model.layers.14.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 517 |
+
"model.layers.14.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 518 |
+
"model.layers.14.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 519 |
+
"model.layers.14.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 520 |
+
"model.layers.14.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 521 |
+
"model.layers.14.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 522 |
+
"model.layers.14.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 523 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 524 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 525 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 526 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 527 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 528 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 529 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 530 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 531 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 532 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 533 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 534 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 535 |
+
"model.layers.15.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 536 |
+
"model.layers.15.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 537 |
+
"model.layers.15.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 538 |
+
"model.layers.15.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 539 |
+
"model.layers.15.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 540 |
+
"model.layers.15.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 541 |
+
"model.layers.15.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 542 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 543 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 544 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 545 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 546 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 547 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 548 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 549 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 550 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 551 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 552 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 553 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 554 |
+
"model.layers.16.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 555 |
+
"model.layers.16.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 556 |
+
"model.layers.16.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 557 |
+
"model.layers.16.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 558 |
+
"model.layers.16.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 559 |
+
"model.layers.16.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 560 |
+
"model.layers.16.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 561 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 562 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 563 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 564 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 565 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 566 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 567 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 568 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 569 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 570 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 571 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 572 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 573 |
+
"model.layers.17.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 574 |
+
"model.layers.17.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 575 |
+
"model.layers.17.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 576 |
+
"model.layers.17.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 577 |
+
"model.layers.17.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 578 |
+
"model.layers.17.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 579 |
+
"model.layers.17.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 580 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 581 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 582 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 583 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 584 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 585 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 586 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 587 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 588 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 589 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 590 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 591 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 592 |
+
"model.layers.18.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 593 |
+
"model.layers.18.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 594 |
+
"model.layers.18.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 595 |
+
"model.layers.18.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 596 |
+
"model.layers.18.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 597 |
+
"model.layers.18.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 598 |
+
"model.layers.18.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 599 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 600 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 601 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 602 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 603 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 604 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 605 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 606 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 607 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 608 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 609 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 610 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 611 |
+
"model.layers.19.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 612 |
+
"model.layers.19.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 613 |
+
"model.layers.19.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 614 |
+
"model.layers.19.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 615 |
+
"model.layers.19.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 616 |
+
"model.layers.19.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 617 |
+
"model.layers.19.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 618 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 619 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 620 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 621 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 622 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 623 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 624 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 625 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 626 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 627 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 628 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 629 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 630 |
+
"model.layers.2.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 631 |
+
"model.layers.2.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 632 |
+
"model.layers.2.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 633 |
+
"model.layers.2.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 634 |
+
"model.layers.2.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 635 |
+
"model.layers.2.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 636 |
+
"model.layers.2.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 637 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 638 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 639 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 640 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 641 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 642 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 643 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 644 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 645 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 646 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 647 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 648 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 649 |
+
"model.layers.20.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 650 |
+
"model.layers.20.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 651 |
+
"model.layers.20.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 652 |
+
"model.layers.20.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 653 |
+
"model.layers.20.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 654 |
+
"model.layers.20.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 655 |
+
"model.layers.20.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 656 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 657 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 658 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 659 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 660 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 661 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 662 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 663 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 664 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 665 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 666 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 667 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 668 |
+
"model.layers.21.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 669 |
+
"model.layers.21.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 670 |
+
"model.layers.21.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 671 |
+
"model.layers.21.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 672 |
+
"model.layers.21.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 673 |
+
"model.layers.21.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 674 |
+
"model.layers.21.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 675 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 676 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 677 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 678 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 679 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 680 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 681 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 682 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 683 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 684 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 685 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 686 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 687 |
+
"model.layers.22.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 688 |
+
"model.layers.22.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 689 |
+
"model.layers.22.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 690 |
+
"model.layers.22.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 691 |
+
"model.layers.22.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 692 |
+
"model.layers.22.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 693 |
+
"model.layers.22.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 694 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 695 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 696 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 697 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 698 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 699 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 700 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 701 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 702 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 703 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 704 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 705 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 706 |
+
"model.layers.23.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 707 |
+
"model.layers.23.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 708 |
+
"model.layers.23.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 709 |
+
"model.layers.23.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 710 |
+
"model.layers.23.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 711 |
+
"model.layers.23.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 712 |
+
"model.layers.23.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 713 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 714 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 715 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 716 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 717 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 718 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 719 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 720 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 721 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 722 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 723 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 724 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 725 |
+
"model.layers.24.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 726 |
+
"model.layers.24.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 727 |
+
"model.layers.24.self_attn.casa_attn.o_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 728 |
+
"model.layers.24.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 729 |
+
"model.layers.24.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 730 |
+
"model.layers.24.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 731 |
+
"model.layers.24.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 732 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 733 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 734 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 735 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 736 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 737 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 738 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 739 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 740 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 741 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 742 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 743 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 744 |
+
"model.layers.25.self_attn.casa_attn.k_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 745 |
+
"model.layers.25.self_attn.casa_attn.k_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 746 |
+
"model.layers.25.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 747 |
+
"model.layers.25.self_attn.casa_attn.q_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 748 |
+
"model.layers.25.self_attn.casa_attn.q_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 749 |
+
"model.layers.25.self_attn.casa_attn.v_proj_casa.bias": "model-00002-of-00004.safetensors",
|
| 750 |
+
"model.layers.25.self_attn.casa_attn.v_proj_casa.weight": "model-00002-of-00004.safetensors",
|
| 751 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 752 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 753 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 754 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 755 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 756 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 757 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 758 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 759 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 760 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 761 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 762 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 763 |
+
"model.layers.26.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 764 |
+
"model.layers.26.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 765 |
+
"model.layers.26.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 766 |
+
"model.layers.26.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 767 |
+
"model.layers.26.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 768 |
+
"model.layers.26.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 769 |
+
"model.layers.26.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 770 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 771 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 772 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 773 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 774 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 775 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 776 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 777 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 778 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 779 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 780 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 781 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 782 |
+
"model.layers.27.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 783 |
+
"model.layers.27.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 784 |
+
"model.layers.27.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 785 |
+
"model.layers.27.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 786 |
+
"model.layers.27.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 787 |
+
"model.layers.27.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 788 |
+
"model.layers.27.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 789 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 790 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 791 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 792 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 793 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 794 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 795 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 796 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 797 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 798 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 799 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 800 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 801 |
+
"model.layers.28.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 802 |
+
"model.layers.28.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 803 |
+
"model.layers.28.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 804 |
+
"model.layers.28.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 805 |
+
"model.layers.28.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 806 |
+
"model.layers.28.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 807 |
+
"model.layers.28.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 808 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 809 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 810 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 811 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 812 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 813 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 814 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 815 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 816 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 817 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 818 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 819 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 820 |
+
"model.layers.29.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 821 |
+
"model.layers.29.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 822 |
+
"model.layers.29.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 823 |
+
"model.layers.29.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 824 |
+
"model.layers.29.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 825 |
+
"model.layers.29.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 826 |
+
"model.layers.29.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 827 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 828 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 829 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 830 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 831 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 832 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 833 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 834 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 835 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 836 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 837 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 838 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 839 |
+
"model.layers.3.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 840 |
+
"model.layers.3.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 841 |
+
"model.layers.3.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 842 |
+
"model.layers.3.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 843 |
+
"model.layers.3.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 844 |
+
"model.layers.3.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 845 |
+
"model.layers.3.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 846 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 847 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 848 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 849 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 850 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 851 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 852 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 853 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 854 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 855 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 856 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 857 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 858 |
+
"model.layers.30.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 859 |
+
"model.layers.30.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 860 |
+
"model.layers.30.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 861 |
+
"model.layers.30.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 862 |
+
"model.layers.30.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 863 |
+
"model.layers.30.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 864 |
+
"model.layers.30.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 865 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 866 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 867 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 868 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 869 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 870 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 871 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 872 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 873 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 874 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 875 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 876 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 877 |
+
"model.layers.31.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 878 |
+
"model.layers.31.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 879 |
+
"model.layers.31.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 880 |
+
"model.layers.31.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 881 |
+
"model.layers.31.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 882 |
+
"model.layers.31.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 883 |
+
"model.layers.31.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 884 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 885 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 886 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 887 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 888 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 889 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 890 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 891 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 892 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 893 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 894 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 895 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 896 |
+
"model.layers.32.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 897 |
+
"model.layers.32.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 898 |
+
"model.layers.32.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 899 |
+
"model.layers.32.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 900 |
+
"model.layers.32.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 901 |
+
"model.layers.32.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 902 |
+
"model.layers.32.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 903 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 904 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 905 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 906 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 907 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 908 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 909 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 910 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 911 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 912 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 913 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 914 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 915 |
+
"model.layers.33.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 916 |
+
"model.layers.33.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 917 |
+
"model.layers.33.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 918 |
+
"model.layers.33.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 919 |
+
"model.layers.33.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 920 |
+
"model.layers.33.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 921 |
+
"model.layers.33.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 922 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 923 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 924 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 925 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 926 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 927 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 928 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 929 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 930 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 931 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 932 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 933 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 934 |
+
"model.layers.34.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 935 |
+
"model.layers.34.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 936 |
+
"model.layers.34.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 937 |
+
"model.layers.34.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 938 |
+
"model.layers.34.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 939 |
+
"model.layers.34.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 940 |
+
"model.layers.34.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 941 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 942 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 943 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 944 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 945 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 946 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 947 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 948 |
+
"model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 949 |
+
"model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 950 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 951 |
+
"model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 952 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 953 |
+
"model.layers.35.self_attn.casa_attn.k_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 954 |
+
"model.layers.35.self_attn.casa_attn.k_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 955 |
+
"model.layers.35.self_attn.casa_attn.o_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 956 |
+
"model.layers.35.self_attn.casa_attn.q_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 957 |
+
"model.layers.35.self_attn.casa_attn.q_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 958 |
+
"model.layers.35.self_attn.casa_attn.v_proj_casa.bias": "model-00003-of-00004.safetensors",
|
| 959 |
+
"model.layers.35.self_attn.casa_attn.v_proj_casa.weight": "model-00003-of-00004.safetensors",
|
| 960 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 961 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 962 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 963 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 964 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 965 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 966 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 967 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 968 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 969 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 970 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 971 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 972 |
+
"model.layers.4.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 973 |
+
"model.layers.4.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 974 |
+
"model.layers.4.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 975 |
+
"model.layers.4.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 976 |
+
"model.layers.4.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 977 |
+
"model.layers.4.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 978 |
+
"model.layers.4.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 979 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 980 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 981 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 982 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 983 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 984 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 985 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 986 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 987 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 988 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 989 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 990 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 991 |
+
"model.layers.5.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 992 |
+
"model.layers.5.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 993 |
+
"model.layers.5.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 994 |
+
"model.layers.5.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 995 |
+
"model.layers.5.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 996 |
+
"model.layers.5.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 997 |
+
"model.layers.5.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 998 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 999 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 1000 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 1001 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 1002 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 1003 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 1004 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 1005 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1006 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 1007 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 1008 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 1009 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1010 |
+
"model.layers.6.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1011 |
+
"model.layers.6.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1012 |
+
"model.layers.6.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1013 |
+
"model.layers.6.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1014 |
+
"model.layers.6.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1015 |
+
"model.layers.6.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1016 |
+
"model.layers.6.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1017 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 1018 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 1019 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 1020 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 1021 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 1022 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 1023 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 1024 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1025 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 1026 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 1027 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 1028 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1029 |
+
"model.layers.7.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1030 |
+
"model.layers.7.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1031 |
+
"model.layers.7.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1032 |
+
"model.layers.7.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1033 |
+
"model.layers.7.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1034 |
+
"model.layers.7.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1035 |
+
"model.layers.7.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1036 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 1037 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 1038 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 1039 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 1040 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 1041 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 1042 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 1043 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1044 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 1045 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 1046 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 1047 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1048 |
+
"model.layers.8.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1049 |
+
"model.layers.8.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1050 |
+
"model.layers.8.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1051 |
+
"model.layers.8.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1052 |
+
"model.layers.8.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1053 |
+
"model.layers.8.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1054 |
+
"model.layers.8.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1055 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 1056 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 1057 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 1058 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 1059 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 1060 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 1061 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 1062 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1063 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 1064 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 1065 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 1066 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 1067 |
+
"model.layers.9.self_attn.casa_attn.k_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1068 |
+
"model.layers.9.self_attn.casa_attn.k_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1069 |
+
"model.layers.9.self_attn.casa_attn.o_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1070 |
+
"model.layers.9.self_attn.casa_attn.q_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1071 |
+
"model.layers.9.self_attn.casa_attn.q_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1072 |
+
"model.layers.9.self_attn.casa_attn.v_proj_casa.bias": "model-00001-of-00004.safetensors",
|
| 1073 |
+
"model.layers.9.self_attn.casa_attn.v_proj_casa.weight": "model-00001-of-00004.safetensors",
|
| 1074 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 1075 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 1076 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 1077 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 1078 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 1079 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 1080 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 1081 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 1082 |
+
}
|
| 1083 |
+
}
|
modeling_qwen2_5vl_casa.py
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
from typing import Any
|
| 3 |
+
from typing import cast as type_cast
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from transformers.cache_utils import DynamicCache
|
| 7 |
+
from transformers.generation.utils import GenerateOutput
|
| 8 |
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
| 9 |
+
Qwen2_5_VLCausalLMOutputWithPast,
|
| 10 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from .image_encoder import Qwen25VLEncoder
|
| 14 |
+
from .configuration_qwen2_5vl_casa import Qwen2_5_VLCASAConfig
|
| 15 |
+
from .language_qwen2_5vl_casa import (
|
| 16 |
+
Qwen2_5_VLAttention_CASA,
|
| 17 |
+
QwenCASAAttention,
|
| 18 |
+
QwenCASAAttentionHandler,
|
| 19 |
+
add_casa_layers,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class V2Qwen2_5VL(Qwen2_5_VLForConditionalGeneration): # pyright: ignore[reportIncompatibleMethodOverride]
|
| 24 |
+
config_class = Qwen2_5_VLCASAConfig
|
| 25 |
+
|
| 26 |
+
def __init__(self, config: Qwen2_5_VLCASAConfig, **kwargs: Any) -> None:
|
| 27 |
+
del kwargs
|
| 28 |
+
super().__init__(config)
|
| 29 |
+
self.image_prefix = Qwen25VLEncoder(self.visual) # type: ignore[assignment]
|
| 30 |
+
self.visual = None
|
| 31 |
+
self.model.apply(partial(add_casa_layers, xa_layers=self.config.xa_layers))
|
| 32 |
+
|
| 33 |
+
def get_device(self) -> str:
|
| 34 |
+
"""Return the device type of the model"""
|
| 35 |
+
return next(self.parameters()).device.type
|
| 36 |
+
|
| 37 |
+
@property
|
| 38 |
+
def token_dim(self) -> int:
|
| 39 |
+
"""Returns the number of dimensions for the token representation"""
|
| 40 |
+
return self.config.hidden_size
|
| 41 |
+
|
| 42 |
+
def _update_model_kwargs_for_generation(
|
| 43 |
+
self,
|
| 44 |
+
outputs: Any,
|
| 45 |
+
model_kwargs: dict[str, Any],
|
| 46 |
+
is_encoder_decoder: bool = False,
|
| 47 |
+
num_new_tokens: int = 1,
|
| 48 |
+
):
|
| 49 |
+
"""This is required to handle multiple gen calls for subtitles"""
|
| 50 |
+
# Call parent to get default updates
|
| 51 |
+
model_kwargs = super()._update_model_kwargs_for_generation(
|
| 52 |
+
outputs, model_kwargs, is_encoder_decoder, num_new_tokens
|
| 53 |
+
)
|
| 54 |
+
# Used by prepare_inputs_for_generation
|
| 55 |
+
model_kwargs["__is_first_gen_call__"] = False
|
| 56 |
+
return model_kwargs
|
| 57 |
+
|
| 58 |
+
def prepare_inputs_for_generation( # pyright: ignore[reportIncompatibleMethodOverride]
|
| 59 |
+
self,
|
| 60 |
+
input_ids: torch.Tensor,
|
| 61 |
+
past_key_values: DynamicCache | None = None,
|
| 62 |
+
**kwargs: Any,
|
| 63 |
+
):
|
| 64 |
+
"""Required to handle cache_position = None with QwenVL"""
|
| 65 |
+
__is_first_gen_call__ = kwargs.pop("__is_first_gen_call__", True)
|
| 66 |
+
if past_key_values is not None and (
|
| 67 |
+
kwargs.get("cache_position") is None
|
| 68 |
+
or type_cast(torch.Tensor, kwargs.get("cache_position")).shape[0] == 0
|
| 69 |
+
):
|
| 70 |
+
# We're continuing from a cached state
|
| 71 |
+
past_length = past_key_values._seen_tokens
|
| 72 |
+
kwargs["cache_position"] = torch.arange(
|
| 73 |
+
past_length,
|
| 74 |
+
past_length + (input_ids.shape[1] if __is_first_gen_call__ else 1),
|
| 75 |
+
dtype=torch.long,
|
| 76 |
+
device=input_ids.device,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
return super().prepare_inputs_for_generation(
|
| 80 |
+
input_ids,
|
| 81 |
+
past_key_values=past_key_values,
|
| 82 |
+
**kwargs,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def prepare_multimodal_inputs(
|
| 86 |
+
self,
|
| 87 |
+
# text only training
|
| 88 |
+
input_ids: torch.Tensor | None = None,
|
| 89 |
+
inputs_embeds: torch.Tensor | None = None,
|
| 90 |
+
attention_mask: torch.Tensor | None = None,
|
| 91 |
+
image_embeds_insertion_points: list[torch.Tensor] | None = None,
|
| 92 |
+
labels: torch.Tensor | None = None,
|
| 93 |
+
# image values
|
| 94 |
+
pixel_values: torch.Tensor | list[torch.Tensor] | None = None,
|
| 95 |
+
pre_image_tokens: list[int] | None = None,
|
| 96 |
+
post_image_tokens: list[int] | None = None,
|
| 97 |
+
**_kwargs: Any,
|
| 98 |
+
) -> dict:
|
| 99 |
+
"""Get a batch data mixing text and image data"""
|
| 100 |
+
del _kwargs
|
| 101 |
+
|
| 102 |
+
processed_inputs: dict = {
|
| 103 |
+
"input_ids": input_ids,
|
| 104 |
+
"inputs_embeds": inputs_embeds,
|
| 105 |
+
"labels": labels,
|
| 106 |
+
"attention_mask": attention_mask,
|
| 107 |
+
"image_embeds_insertion_points": image_embeds_insertion_points,
|
| 108 |
+
}
|
| 109 |
+
if pixel_values is not None:
|
| 110 |
+
processed_inputs.update(self.image_prefix(pixel_values))
|
| 111 |
+
assert "image_embeds" in processed_inputs
|
| 112 |
+
assert (
|
| 113 |
+
isinstance(processed_inputs["image_embeds"], torch.Tensor)
|
| 114 |
+
and processed_inputs["image_embeds"].ndim == 3
|
| 115 |
+
) or (
|
| 116 |
+
isinstance(processed_inputs["image_embeds"], list)
|
| 117 |
+
and all(_x.ndim == 2 for _x in processed_inputs["image_embeds"])
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Add kwargs necessary to compute cu_seqlens windows for CASA
|
| 121 |
+
processed_inputs["casa_windows_info"] = {
|
| 122 |
+
"num_post_image_tokens": 0 if post_image_tokens is None else len(post_image_tokens),
|
| 123 |
+
"num_pre_image_tokens": 0 if pre_image_tokens is None else len(pre_image_tokens),
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
return processed_inputs
|
| 127 |
+
|
| 128 |
+
def forward( # type: ignore[override] # pylint: disable=W0221
|
| 129 |
+
self,
|
| 130 |
+
input_ids: torch.Tensor | None = None,
|
| 131 |
+
inputs_embeds: torch.Tensor | None = None,
|
| 132 |
+
attention_mask: torch.Tensor | None = None,
|
| 133 |
+
pixel_values: torch.Tensor | list[torch.Tensor] | None = None,
|
| 134 |
+
labels: torch.Tensor | None = None,
|
| 135 |
+
image_embeds_insertion_points: list[torch.Tensor] | None = None,
|
| 136 |
+
reinit_casa_handler: bool = True,
|
| 137 |
+
pre_image_tokens: list[int] | None = None,
|
| 138 |
+
post_image_tokens: list[int] | None = None,
|
| 139 |
+
**kwargs: Any,
|
| 140 |
+
) -> tuple | Qwen2_5_VLCausalLMOutputWithPast:
|
| 141 |
+
"""Multi-modal forward pass"""
|
| 142 |
+
|
| 143 |
+
if reinit_casa_handler:
|
| 144 |
+
processed_inputs = self.prepare_multimodal_inputs(
|
| 145 |
+
input_ids=input_ids,
|
| 146 |
+
inputs_embeds=inputs_embeds,
|
| 147 |
+
attention_mask=attention_mask,
|
| 148 |
+
image_embeds_insertion_points=image_embeds_insertion_points,
|
| 149 |
+
pixel_values=pixel_values,
|
| 150 |
+
labels=labels,
|
| 151 |
+
post_image_tokens=post_image_tokens,
|
| 152 |
+
pre_image_tokens=pre_image_tokens,
|
| 153 |
+
)
|
| 154 |
+
inputs_embeds = type_cast(
|
| 155 |
+
torch.Tensor, self.model.embed_tokens(processed_inputs["input_ids"])
|
| 156 |
+
)
|
| 157 |
+
casa_attention_handler: QwenCASAAttentionHandler | None = None
|
| 158 |
+
image_embeds = processed_inputs.get("image_embeds", None)
|
| 159 |
+
attention_mask = processed_inputs["attention_mask"]
|
| 160 |
+
inst_points = processed_inputs.get("image_embeds_insertion_points", None)
|
| 161 |
+
if image_embeds is None:
|
| 162 |
+
inst_points = None
|
| 163 |
+
casa_attention_handler = QwenCASAAttentionHandler(
|
| 164 |
+
# for text tokens, we don't need the actual values
|
| 165 |
+
inputs_embeds=torch.zeros_like(inputs_embeds),
|
| 166 |
+
# for image embeddings, we put real inputs as this will be fixed
|
| 167 |
+
image_embeds=[] if image_embeds is None else image_embeds,
|
| 168 |
+
image_embeds_insertion_points=inst_points,
|
| 169 |
+
# attention mask is only needed at inference / left padding
|
| 170 |
+
attention_mask=None if self.training else processed_inputs["attention_mask"],
|
| 171 |
+
rope_fn=self.model.rotary_emb,
|
| 172 |
+
windows=self.config.casa_windows,
|
| 173 |
+
casa_windows_info=processed_inputs.pop("casa_windows_info", None),
|
| 174 |
+
use_asymetric_q_kv=self.config.casa_use_asymetric_qkv,
|
| 175 |
+
# extra for Qwen
|
| 176 |
+
get_rope_index=self.get_rope_index,
|
| 177 |
+
grid_thw=processed_inputs.get("grid_thw", None),
|
| 178 |
+
)
|
| 179 |
+
self.update_casa_states(casa_attention_handler)
|
| 180 |
+
else:
|
| 181 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
| 182 |
+
|
| 183 |
+
# Run Qwen with the attention layers replaced to use CASA
|
| 184 |
+
assert inputs_embeds is not None, "Could not compute input embeddings!"
|
| 185 |
+
out = super().forward(
|
| 186 |
+
inputs_embeds=inputs_embeds, # type: ignore[arg-type]
|
| 187 |
+
attention_mask=attention_mask,
|
| 188 |
+
pixel_values=None,
|
| 189 |
+
**kwargs,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
return out
|
| 193 |
+
|
| 194 |
+
@torch.no_grad()
|
| 195 |
+
def generate_from_image( # pyright: ignore[reportInconsistentOverload]
|
| 196 |
+
self,
|
| 197 |
+
input_ids: torch.Tensor | None = None,
|
| 198 |
+
inputs_embeds: torch.Tensor | None = None,
|
| 199 |
+
attention_mask: torch.Tensor | None = None,
|
| 200 |
+
image_embeds_insertion_points: list[torch.Tensor] | None = None,
|
| 201 |
+
pixel_values: torch.Tensor | list[torch.Tensor] | None = None,
|
| 202 |
+
pre_image_tokens: list[int] | None = None,
|
| 203 |
+
post_image_tokens: list[int] | None = None,
|
| 204 |
+
position_ids_offset: int | None = None,
|
| 205 |
+
reset_streaming: bool = True,
|
| 206 |
+
**kwargs: Any,
|
| 207 |
+
) -> GenerateOutput | torch.LongTensor:
|
| 208 |
+
"""Custom generate function"""
|
| 209 |
+
assert input_ids is not None and inputs_embeds is None, (
|
| 210 |
+
"Input IDs must be provided for generation"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# init self-attention KVCache
|
| 214 |
+
if kwargs.get("past_key_values", None) is None:
|
| 215 |
+
kwargs["past_key_values"] = DynamicCache()
|
| 216 |
+
|
| 217 |
+
# To avoid generate warning
|
| 218 |
+
if kwargs.get("pad_token_id", None) is None:
|
| 219 |
+
kwargs["pad_token_id"] = kwargs.get("eos_token_id", None)
|
| 220 |
+
if isinstance(kwargs["pad_token_id"], (list, tuple)):
|
| 221 |
+
kwargs["pad_token_id"] = kwargs["pad_token_id"][0]
|
| 222 |
+
|
| 223 |
+
# Init CASA states
|
| 224 |
+
processed_inputs = self.prepare_multimodal_inputs(
|
| 225 |
+
input_ids=input_ids,
|
| 226 |
+
inputs_embeds=inputs_embeds,
|
| 227 |
+
attention_mask=attention_mask,
|
| 228 |
+
image_embeds_insertion_points=image_embeds_insertion_points,
|
| 229 |
+
pixel_values=pixel_values,
|
| 230 |
+
labels=None,
|
| 231 |
+
pre_image_tokens=pre_image_tokens,
|
| 232 |
+
post_image_tokens=post_image_tokens,
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
if pixel_values is not None:
|
| 236 |
+
assert (image_embeds := processed_inputs.get("image_embeds", None)) is not None
|
| 237 |
+
assert (
|
| 238 |
+
insrt_pts := processed_inputs.get("image_embeds_insertion_points", None)
|
| 239 |
+
) is not None
|
| 240 |
+
casa_attention_handler = QwenCASAAttentionHandler(
|
| 241 |
+
inputs_embeds=torch.empty(
|
| 242 |
+
(input_ids.shape[0], input_ids.shape[1], image_embeds[0].shape[-1]),
|
| 243 |
+
dtype=image_embeds[0].dtype,
|
| 244 |
+
device=image_embeds[0].device,
|
| 245 |
+
),
|
| 246 |
+
image_embeds=image_embeds,
|
| 247 |
+
image_embeds_insertion_points=insrt_pts,
|
| 248 |
+
attention_mask=attention_mask,
|
| 249 |
+
rope_fn=self.model.rotary_emb,
|
| 250 |
+
windows=self.config.casa_windows,
|
| 251 |
+
casa_windows_info=processed_inputs.pop("casa_windows_info", None),
|
| 252 |
+
use_asymetric_q_kv=self.config.casa_use_asymetric_qkv,
|
| 253 |
+
get_rope_index=self.get_rope_index,
|
| 254 |
+
grid_thw=processed_inputs.get("grid_thw", None),
|
| 255 |
+
position_ids_offset=position_ids_offset or kwargs["past_key_values"]._seen_tokens,
|
| 256 |
+
)
|
| 257 |
+
self.update_casa_states(casa_attention_handler)
|
| 258 |
+
self.start_casa_streaming_states()
|
| 259 |
+
pixel_values = None
|
| 260 |
+
|
| 261 |
+
# Generate
|
| 262 |
+
outputs = self.generate(
|
| 263 |
+
input_ids,
|
| 264 |
+
attention_mask=attention_mask,
|
| 265 |
+
pixel_values=pixel_values,
|
| 266 |
+
use_cache=True,
|
| 267 |
+
reinit_casa_handler=False,
|
| 268 |
+
**kwargs,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
if reset_streaming:
|
| 272 |
+
self.reset_casa_streaming_states()
|
| 273 |
+
return outputs
|
| 274 |
+
|
| 275 |
+
def update_casa_states(self, handler: QwenCASAAttentionHandler | None):
|
| 276 |
+
"""Update handler in all layers"""
|
| 277 |
+
|
| 278 |
+
def __update__(m: torch.nn.Module):
|
| 279 |
+
nonlocal handler
|
| 280 |
+
|
| 281 |
+
if isinstance(m, Qwen2_5_VLAttention_CASA):
|
| 282 |
+
m.casa_attention_handler = handler
|
| 283 |
+
|
| 284 |
+
self.apply(__update__)
|
| 285 |
+
|
| 286 |
+
def reset_casa_streaming_states(self, clean_cache: bool = True) -> None:
|
| 287 |
+
def __reset__(m: torch.nn.Module):
|
| 288 |
+
if isinstance(m, QwenCASAAttention):
|
| 289 |
+
m._set_streaming(False, ())
|
| 290 |
+
m.reset_streaming()
|
| 291 |
+
if clean_cache:
|
| 292 |
+
del m.streaming_state.k
|
| 293 |
+
del m.streaming_state.v
|
| 294 |
+
m.streaming_state.k = None # pyright: ignore[reportAttributeAccessIssue]
|
| 295 |
+
m.streaming_state.v = None # pyright: ignore[reportAttributeAccessIssue]
|
| 296 |
+
|
| 297 |
+
elif isinstance(m, Qwen2_5_VLAttention_CASA):
|
| 298 |
+
del m.casa_attention_handler
|
| 299 |
+
m.casa_attention_handler = None
|
| 300 |
+
|
| 301 |
+
self.apply(__reset__)
|
| 302 |
+
|
| 303 |
+
def start_casa_streaming_states(self) -> None:
|
| 304 |
+
def __start__(m: torch.nn.Module):
|
| 305 |
+
if isinstance(m, QwenCASAAttention):
|
| 306 |
+
m._set_streaming(True, ())
|
| 307 |
+
|
| 308 |
+
self.apply(__start__)
|
processing.py
ADDED
|
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pylint: disable=no-member # avoid weird pylint warnings from SentencePieceProcessor
|
| 2 |
+
"""Text and Image processor for CASA models using Qwen2.5_VL image encoder"""
|
| 3 |
+
|
| 4 |
+
from math import ceil
|
| 5 |
+
from typing import TYPE_CHECKING, Any, Literal, TypedDict, cast, overload
|
| 6 |
+
from typing import cast as type_cast
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torchvision.transforms.v2 as T
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from torchvision.transforms import InterpolationMode
|
| 13 |
+
from torchvision.transforms.functional import to_tensor as pil_to_tensor
|
| 14 |
+
from torchvision.transforms.v2 import functional as F
|
| 15 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
| 16 |
+
from transformers.processing_utils import ProcessorMixin
|
| 17 |
+
|
| 18 |
+
if TYPE_CHECKING:
|
| 19 |
+
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
|
| 20 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
ImageMessage = TypedDict(
|
| 24 |
+
"ImageMessage",
|
| 25 |
+
{
|
| 26 |
+
"type": Literal["image"],
|
| 27 |
+
"image": str | Image.Image | None,
|
| 28 |
+
},
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
TextMessage = TypedDict(
|
| 32 |
+
"TextMessage",
|
| 33 |
+
{
|
| 34 |
+
"type": Literal["text"],
|
| 35 |
+
"text": str,
|
| 36 |
+
},
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
MessageContent = list[ImageMessage | TextMessage]
|
| 40 |
+
|
| 41 |
+
Message = TypedDict(
|
| 42 |
+
"Message",
|
| 43 |
+
{
|
| 44 |
+
"role": Literal["system", "user", "assistant"],
|
| 45 |
+
"content": MessageContent,
|
| 46 |
+
},
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
ProcessorInput = list[list[Message]] | list[Message]
|
| 50 |
+
|
| 51 |
+
__INTERP_NAME_TO_MODE__ = {
|
| 52 |
+
"nearest": InterpolationMode.NEAREST,
|
| 53 |
+
"bilinear": InterpolationMode.BILINEAR,
|
| 54 |
+
"bicubic": InterpolationMode.BICUBIC,
|
| 55 |
+
"lanczos": InterpolationMode.LANCZOS,
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
__INTERP_INT_TO_MODE__ = {
|
| 59 |
+
0: InterpolationMode.NEAREST,
|
| 60 |
+
2: InterpolationMode.BILINEAR,
|
| 61 |
+
3: InterpolationMode.BICUBIC,
|
| 62 |
+
4: InterpolationMode.BOX,
|
| 63 |
+
5: InterpolationMode.HAMMING,
|
| 64 |
+
1: InterpolationMode.LANCZOS,
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
@overload
|
| 69 |
+
def universal_resize(
|
| 70 |
+
img: Image.Image,
|
| 71 |
+
size: tuple[int, int],
|
| 72 |
+
interpolation: str | InterpolationMode | int = "bilinear",
|
| 73 |
+
antialias: bool = True,
|
| 74 |
+
) -> Image.Image: ...
|
| 75 |
+
@overload
|
| 76 |
+
def universal_resize(
|
| 77 |
+
img: torch.Tensor,
|
| 78 |
+
size: tuple[int, int],
|
| 79 |
+
interpolation: str | InterpolationMode | int = "bilinear",
|
| 80 |
+
antialias: bool = True,
|
| 81 |
+
) -> torch.Tensor: ...
|
| 82 |
+
def universal_resize(
|
| 83 |
+
img: Image.Image | torch.Tensor,
|
| 84 |
+
size: tuple[int, int],
|
| 85 |
+
interpolation: str | InterpolationMode | int = "bilinear",
|
| 86 |
+
antialias: bool = True,
|
| 87 |
+
) -> Image.Image | torch.Tensor:
|
| 88 |
+
"""Resize that works for PIL.Image, CHW tensor, or BCHW tensor"""
|
| 89 |
+
if isinstance(interpolation, str):
|
| 90 |
+
interpolation = __INTERP_NAME_TO_MODE__[interpolation]
|
| 91 |
+
elif isinstance(interpolation, int):
|
| 92 |
+
interpolation = __INTERP_INT_TO_MODE__[interpolation]
|
| 93 |
+
|
| 94 |
+
return F.resize(
|
| 95 |
+
img, size, interpolation=type_cast(InterpolationMode, interpolation), antialias=antialias
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@overload
|
| 100 |
+
def convert_to_rgb(img: Image.Image) -> Image.Image: ...
|
| 101 |
+
@overload
|
| 102 |
+
def convert_to_rgb(img: torch.Tensor) -> torch.Tensor: ...
|
| 103 |
+
def convert_to_rgb(img: Image.Image | torch.Tensor) -> Image.Image | torch.Tensor:
|
| 104 |
+
"""Convert any image to RGB in a way that does not throw PIL warning"""
|
| 105 |
+
if isinstance(img, torch.Tensor):
|
| 106 |
+
return img
|
| 107 |
+
if img.mode == "RGB": # no changes
|
| 108 |
+
return img
|
| 109 |
+
if img.mode == "P": # palette images need to be converted to RGBA first
|
| 110 |
+
return img.convert("RGBA").convert("RGB")
|
| 111 |
+
return img.convert("RGB")
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class QwenImageProcessor(BaseImageProcessor):
|
| 115 |
+
"""Resizing for the Qwen2.5VL encoder. Note that the normalization is
|
| 116 |
+
handled in the image_encoder in the model forward"""
|
| 117 |
+
|
| 118 |
+
def __init__(
|
| 119 |
+
self,
|
| 120 |
+
img_size: int = 448,
|
| 121 |
+
interpolation: Literal["bicubic", "bilinear", "nearest", "nearest_exact"] = "bicubic",
|
| 122 |
+
max_ratio: int = 10,
|
| 123 |
+
round_to_patch_size: int = 56,
|
| 124 |
+
use_fast: bool = True,
|
| 125 |
+
**kwargs: Any,
|
| 126 |
+
) -> None:
|
| 127 |
+
# this will also be used in V2llms to determine whether to remove
|
| 128 |
+
# the temporal conv
|
| 129 |
+
self._num_target_channels = 588
|
| 130 |
+
self._merge_size = 2
|
| 131 |
+
self._patch_size = 14
|
| 132 |
+
super().__init__(
|
| 133 |
+
use_fast=use_fast,
|
| 134 |
+
do_normalize=False,
|
| 135 |
+
**kwargs,
|
| 136 |
+
)
|
| 137 |
+
self.img_size = img_size
|
| 138 |
+
self.interpolation = interpolation
|
| 139 |
+
self.max_ratio = max_ratio
|
| 140 |
+
self.round_to_patch_size = round_to_patch_size
|
| 141 |
+
|
| 142 |
+
def resize_transform(
|
| 143 |
+
self, img: Image.Image | torch.Tensor, img_size: int | None = None
|
| 144 |
+
) -> Image.Image | torch.Tensor:
|
| 145 |
+
if img_size is None:
|
| 146 |
+
img_size = self.img_size
|
| 147 |
+
max_area = img_size**2
|
| 148 |
+
if isinstance(img, Image.Image):
|
| 149 |
+
img = convert_to_rgb(img)
|
| 150 |
+
w_og, h_og = img.size
|
| 151 |
+
else:
|
| 152 |
+
h_og, w_og = img.shape[-2:]
|
| 153 |
+
w, h = w_og, h_og
|
| 154 |
+
|
| 155 |
+
# Qwen requires max ratio of 10 between max and min sizes
|
| 156 |
+
if self.max_ratio > 0:
|
| 157 |
+
w, h = max(w, h // self.max_ratio), max(h, w // self.max_ratio)
|
| 158 |
+
|
| 159 |
+
# resize to max area
|
| 160 |
+
current_area = w * h
|
| 161 |
+
if current_area > max_area:
|
| 162 |
+
scale = (max_area / current_area) ** 0.5
|
| 163 |
+
w, h = int(w * scale), int(h * scale)
|
| 164 |
+
|
| 165 |
+
# resize to patch size
|
| 166 |
+
if self.round_to_patch_size > 0:
|
| 167 |
+
w = ceil(w / self.round_to_patch_size) * self.round_to_patch_size
|
| 168 |
+
h = ceil((h / self.round_to_patch_size)) * self.round_to_patch_size
|
| 169 |
+
|
| 170 |
+
# resize
|
| 171 |
+
if w != w_og or h != h_og:
|
| 172 |
+
img = universal_resize(img, (h, w), self.interpolation)
|
| 173 |
+
if isinstance(img, torch.Tensor):
|
| 174 |
+
img = T.ToDtype(torch.float32, scale=True)(T.ToImage()(img))
|
| 175 |
+
return img
|
| 176 |
+
|
| 177 |
+
def __process_one__(
|
| 178 |
+
self, video_or_img: Image.Image | torch.Tensor, img_size: int | None = None
|
| 179 |
+
) -> torch.Tensor:
|
| 180 |
+
"""Same operation as __process_one_with_processor__ but without going through numpy"""
|
| 181 |
+
video_or_img = self.resize_transform(video_or_img, img_size)
|
| 182 |
+
if isinstance(video_or_img, Image.Image):
|
| 183 |
+
video_or_img = pil_to_tensor(video_or_img)
|
| 184 |
+
assert isinstance(video_or_img, torch.Tensor)
|
| 185 |
+
if video_or_img.ndim == 3:
|
| 186 |
+
video_or_img = video_or_img[None]
|
| 187 |
+
assert video_or_img.ndim == 4 and video_or_img.shape[1] == 3, (
|
| 188 |
+
f"Invalid shape {video_or_img.shape}."
|
| 189 |
+
)
|
| 190 |
+
t, c, h, w = video_or_img.shape
|
| 191 |
+
p = self._patch_size
|
| 192 |
+
m = self._merge_size
|
| 193 |
+
|
| 194 |
+
# Convert to RGB
|
| 195 |
+
if c == 1:
|
| 196 |
+
video_or_img = video_or_img.expand((-1, 3, -1, -1))
|
| 197 |
+
if c == 4:
|
| 198 |
+
video_or_img = video_or_img[:, :3]
|
| 199 |
+
c = video_or_img.shape[1]
|
| 200 |
+
assert c == 3, "Expecting RGB image in QwenNormalize"
|
| 201 |
+
|
| 202 |
+
# Reshape to t h w c' format
|
| 203 |
+
h, w = video_or_img.shape[2] // p, video_or_img.shape[3] // p
|
| 204 |
+
rearrange_dict = dict(p1=p, p2=p, m1=m, m2=m)
|
| 205 |
+
|
| 206 |
+
video_or_img = rearrange(
|
| 207 |
+
video_or_img,
|
| 208 |
+
"t c (h m1 p1) (w m2 p2) -> (t h w m1 m2) (c p1 p2)",
|
| 209 |
+
**rearrange_dict,
|
| 210 |
+
)
|
| 211 |
+
assert video_or_img.shape[-1] == self._num_target_channels, (
|
| 212 |
+
f"{video_or_img.shape[-1]} != {self._num_target_channels}"
|
| 213 |
+
)
|
| 214 |
+
video_or_img = video_or_img.view((-1, h, w, self._num_target_channels))
|
| 215 |
+
|
| 216 |
+
return video_or_img
|
| 217 |
+
|
| 218 |
+
@overload
|
| 219 |
+
def process_images(
|
| 220 |
+
self, image: Image.Image | torch.Tensor, img_size: int | None = None
|
| 221 |
+
) -> torch.Tensor: ...
|
| 222 |
+
@overload
|
| 223 |
+
def process_images(
|
| 224 |
+
self, image: list[Image.Image] | list[torch.Tensor], img_size: int | None = None
|
| 225 |
+
) -> list[torch.Tensor]: ...
|
| 226 |
+
def process_images(
|
| 227 |
+
self,
|
| 228 |
+
image: Image.Image | torch.Tensor | list[Image.Image] | list[torch.Tensor],
|
| 229 |
+
img_size: int | None = None,
|
| 230 |
+
) -> torch.Tensor | list[torch.Tensor]:
|
| 231 |
+
if isinstance(image, list):
|
| 232 |
+
return [self.__process_one__(_x, img_size) for _x in image]
|
| 233 |
+
return self.__process_one__(image, img_size)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class ProcessorOutput(dict):
|
| 237 |
+
input_ids: torch.Tensor
|
| 238 |
+
attention_mask: torch.Tensor
|
| 239 |
+
image_embeds_insertion_points: list[torch.Tensor] | None
|
| 240 |
+
pixel_values: torch.Tensor | list[torch.Tensor] | None
|
| 241 |
+
|
| 242 |
+
def to(
|
| 243 |
+
self, device: torch.device | str, dtype: torch.dtype = torch.bfloat16
|
| 244 |
+
) -> "ProcessorOutput":
|
| 245 |
+
return ProcessorOutput(
|
| 246 |
+
{
|
| 247 |
+
"input_ids": self["input_ids"].to(device),
|
| 248 |
+
"attention_mask": self["attention_mask"].to(device),
|
| 249 |
+
"image_embeds_insertion_points": self["image_embeds_insertion_points"],
|
| 250 |
+
"pixel_values": (
|
| 251 |
+
self["pixel_values"].to(dtype).to(device)
|
| 252 |
+
if isinstance(self["pixel_values"], torch.Tensor)
|
| 253 |
+
else [x.to(dtype).to(device) for x in self["pixel_values"]]
|
| 254 |
+
if self["pixel_values"] is not None
|
| 255 |
+
else None
|
| 256 |
+
),
|
| 257 |
+
}
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class BaseProcessor(ProcessorMixin):
|
| 262 |
+
def __init__(
|
| 263 |
+
self,
|
| 264 |
+
tokenizer: "PreTrainedTokenizerFast | Qwen2Tokenizer",
|
| 265 |
+
pre_image_tokens: tuple[int, ...] = (),
|
| 266 |
+
post_image_tokens: tuple[int, ...] = (),
|
| 267 |
+
system_start_tokens: tuple[int, ...] = (),
|
| 268 |
+
system_end_tokens: tuple[int, ...] = (),
|
| 269 |
+
user_start_tokens: tuple[int, ...] = (),
|
| 270 |
+
user_end_tokens: tuple[int, ...] = (),
|
| 271 |
+
asst_start_tokens: tuple[int, ...] = (),
|
| 272 |
+
asst_end_tokens: tuple[int, ...] = (),
|
| 273 |
+
allow_system_prompt: bool = True,
|
| 274 |
+
pad_token: int = 0,
|
| 275 |
+
bos_token: int | None = None,
|
| 276 |
+
) -> None:
|
| 277 |
+
self.pre_image_tokens = list(pre_image_tokens)
|
| 278 |
+
self.post_image_tokens = list(post_image_tokens)
|
| 279 |
+
self.system_start_tokens = list(system_start_tokens)
|
| 280 |
+
self.system_end_tokens = list(system_end_tokens)
|
| 281 |
+
self.user_start_tokens = list(user_start_tokens)
|
| 282 |
+
self.user_end_tokens = list(user_end_tokens)
|
| 283 |
+
self.asst_start_tokens = list(asst_start_tokens)
|
| 284 |
+
self.asst_end_tokens = list(asst_end_tokens)
|
| 285 |
+
self._allow_system_prompt = allow_system_prompt
|
| 286 |
+
self.tokenizer = tokenizer
|
| 287 |
+
self._image_processor = None
|
| 288 |
+
self._pad_token = pad_token
|
| 289 |
+
self.bos_token = bos_token
|
| 290 |
+
|
| 291 |
+
@property
|
| 292 |
+
def image_processor(self) -> QwenImageProcessor:
|
| 293 |
+
assert self._image_processor is not None
|
| 294 |
+
return self._image_processor
|
| 295 |
+
|
| 296 |
+
def _process_content(
|
| 297 |
+
self,
|
| 298 |
+
message_content: MessageContent,
|
| 299 |
+
role: Literal["system", "user", "assistant"],
|
| 300 |
+
tokenized_messages: list[torch.Tensor],
|
| 301 |
+
insertion_points: list[int],
|
| 302 |
+
image_list: list[torch.Tensor | None],
|
| 303 |
+
token_count: int,
|
| 304 |
+
img_size: int | None = None,
|
| 305 |
+
**kwargs: Any,
|
| 306 |
+
) -> int:
|
| 307 |
+
mapping = {
|
| 308 |
+
"user": (self.user_start_tokens, self.user_end_tokens),
|
| 309 |
+
"assistant": (self.asst_start_tokens, self.asst_end_tokens),
|
| 310 |
+
"system": (self.system_start_tokens, self.system_end_tokens),
|
| 311 |
+
}
|
| 312 |
+
if role.lower() not in mapping:
|
| 313 |
+
raise ValueError(f"Unknown role '{role}' encountered in messages.")
|
| 314 |
+
start_tokens, end_tokens = mapping[role.lower()]
|
| 315 |
+
# 1) Add the start tokens
|
| 316 |
+
if start_tokens:
|
| 317 |
+
tokenized_messages.append(torch.Tensor(start_tokens).flatten().to(torch.long))
|
| 318 |
+
token_count += len(start_tokens)
|
| 319 |
+
# 2) Process the message content one by one (potentially interleaved image and text)
|
| 320 |
+
for part in message_content:
|
| 321 |
+
elt_type = part["type"]
|
| 322 |
+
if elt_type == "image":
|
| 323 |
+
part = cast(ImageMessage, part)
|
| 324 |
+
self._process_image_message(
|
| 325 |
+
part,
|
| 326 |
+
tokenized_messages,
|
| 327 |
+
image_list,
|
| 328 |
+
img_size=img_size,
|
| 329 |
+
)
|
| 330 |
+
token_count += len(self.pre_image_tokens)
|
| 331 |
+
insertion_points.append(token_count)
|
| 332 |
+
token_count += len(self.post_image_tokens)
|
| 333 |
+
else:
|
| 334 |
+
part = cast(TextMessage, part)
|
| 335 |
+
self._process_text_message(
|
| 336 |
+
part["text"],
|
| 337 |
+
role=role,
|
| 338 |
+
token_list=tokenized_messages,
|
| 339 |
+
**kwargs,
|
| 340 |
+
)
|
| 341 |
+
token_count += tokenized_messages[-1].size(0)
|
| 342 |
+
# 3) Add the end tokens
|
| 343 |
+
if end_tokens:
|
| 344 |
+
tokenized_messages.append(torch.Tensor(end_tokens).flatten().to(torch.long))
|
| 345 |
+
token_count += len(end_tokens)
|
| 346 |
+
return token_count
|
| 347 |
+
|
| 348 |
+
def _process_text_message(
|
| 349 |
+
self,
|
| 350 |
+
message: str,
|
| 351 |
+
role: Literal["system", "user", "assistant"],
|
| 352 |
+
token_list: list[torch.Tensor],
|
| 353 |
+
**kwargs: Any,
|
| 354 |
+
) -> None:
|
| 355 |
+
if role.lower() == "system" and not self._allow_system_prompt:
|
| 356 |
+
raise ValueError("System prompts are not allowed in this tokenizer configuration.")
|
| 357 |
+
tokens = self.tokenizer.encode(
|
| 358 |
+
message, add_special_tokens=False, return_tensors="pt", **kwargs
|
| 359 |
+
)
|
| 360 |
+
tokens = cast(torch.Tensor, tokens)
|
| 361 |
+
token_list.append(tokens.flatten().to(torch.long))
|
| 362 |
+
|
| 363 |
+
def _process_image_message(
|
| 364 |
+
self,
|
| 365 |
+
message: ImageMessage,
|
| 366 |
+
token_list: list[torch.Tensor],
|
| 367 |
+
image_list: list[torch.Tensor | None],
|
| 368 |
+
img_size: int | None = None,
|
| 369 |
+
) -> None:
|
| 370 |
+
img = message["image"]
|
| 371 |
+
if img is None:
|
| 372 |
+
image_list.append(None)
|
| 373 |
+
else:
|
| 374 |
+
image_list.append(
|
| 375 |
+
self.image_processor.process_images(
|
| 376 |
+
self._load_image(img), img_size=img_size
|
| 377 |
+
).squeeze(0)
|
| 378 |
+
)
|
| 379 |
+
if self.pre_image_tokens:
|
| 380 |
+
token_list.append(torch.Tensor(self.pre_image_tokens).flatten().to(torch.long))
|
| 381 |
+
|
| 382 |
+
if self.post_image_tokens:
|
| 383 |
+
token_list.append(torch.Tensor(self.post_image_tokens).flatten().to(torch.long))
|
| 384 |
+
|
| 385 |
+
def _load_image(self, image_path_or_image: str | Image.Image) -> Image.Image:
|
| 386 |
+
if isinstance(image_path_or_image, str):
|
| 387 |
+
return Image.open(image_path_or_image).convert("RGB")
|
| 388 |
+
return image_path_or_image
|
| 389 |
+
|
| 390 |
+
def _maybe_pad(self, tokens: torch.Tensor, pad_len: int, pad_value: int) -> torch.Tensor:
|
| 391 |
+
return torch.nn.functional.pad(
|
| 392 |
+
tokens,
|
| 393 |
+
(0, pad_len) if self.tokenizer.padding_side == "right" else (pad_len, 0),
|
| 394 |
+
value=pad_value,
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
def pad_tokenized_messages(
|
| 398 |
+
self,
|
| 399 |
+
tokenized_messages_batch: list[torch.Tensor],
|
| 400 |
+
image_insertion_points_batch: list[torch.Tensor] | None = None,
|
| 401 |
+
) -> tuple[torch.Tensor, torch.Tensor, list[torch.Tensor] | None]:
|
| 402 |
+
max_len = max(len(x) for x in tokenized_messages_batch)
|
| 403 |
+
if image_insertion_points_batch is not None and self.tokenizer.padding_side == "left":
|
| 404 |
+
image_insertion_points_batch = [
|
| 405 |
+
x + max_len - len(tokenized_messages_batch[idx])
|
| 406 |
+
for idx, x in enumerate(image_insertion_points_batch)
|
| 407 |
+
]
|
| 408 |
+
input_ids = torch.stack(
|
| 409 |
+
[
|
| 410 |
+
self._maybe_pad(s, max_len - s.size(0), self._pad_token)
|
| 411 |
+
for s in tokenized_messages_batch
|
| 412 |
+
],
|
| 413 |
+
dim=0,
|
| 414 |
+
)
|
| 415 |
+
attention_mask = torch.stack(
|
| 416 |
+
[
|
| 417 |
+
self._maybe_pad(torch.ones_like(s), max_len - s.size(0), 0)
|
| 418 |
+
for s in tokenized_messages_batch
|
| 419 |
+
],
|
| 420 |
+
dim=0,
|
| 421 |
+
)
|
| 422 |
+
return input_ids, attention_mask, image_insertion_points_batch
|
| 423 |
+
|
| 424 |
+
def tokenize_messages(
|
| 425 |
+
self,
|
| 426 |
+
messages: ProcessorInput,
|
| 427 |
+
suppress_bos_token: bool = False,
|
| 428 |
+
**kwargs: Any,
|
| 429 |
+
) -> ProcessorOutput | None:
|
| 430 |
+
"""Tokenize a batch of messages into token IDs suitable for Helium1 CASA model.
|
| 431 |
+
|
| 432 |
+
Args:
|
| 433 |
+
messages (list[list[dict[str, str]]] | list[dict[str, str]]): Batch of message lists (or single list of messages),
|
| 434 |
+
where each message is a list of dictionaries with 'role' and 'content' keys.
|
| 435 |
+
continue_final_message (bool, optional): If True, the final message in each list will not have an end token added.
|
| 436 |
+
Defaults to False.
|
| 437 |
+
suppress_bos_token (bool, optional): If True, the beginning-of-sequence token will not be added.
|
| 438 |
+
Defaults to False.
|
| 439 |
+
**kwargs: Additional keyword arguments passed to the underlying encode method.
|
| 440 |
+
"""
|
| 441 |
+
if not messages:
|
| 442 |
+
return None
|
| 443 |
+
if isinstance(messages[0], dict):
|
| 444 |
+
messages = [messages] # type: ignore[assignment]
|
| 445 |
+
|
| 446 |
+
messages = cast(list[list[Message]], messages)
|
| 447 |
+
image_insertion_points_batch = []
|
| 448 |
+
tokenized_messages_batch = []
|
| 449 |
+
image_list: list[torch.Tensor | None] = []
|
| 450 |
+
for msgs in messages:
|
| 451 |
+
# msgs.append({
|
| 452 |
+
# "role": "assistant",
|
| 453 |
+
# "content": [{"type": "text", "text": ""}]
|
| 454 |
+
# })
|
| 455 |
+
tokenized_messages = []
|
| 456 |
+
if not suppress_bos_token and self.bos_token is not None:
|
| 457 |
+
tokenized_messages.append(torch.tensor([self.bos_token], dtype=torch.long))
|
| 458 |
+
insertion_points = []
|
| 459 |
+
token_count = 0
|
| 460 |
+
for msg in msgs:
|
| 461 |
+
token_count = self._process_content(
|
| 462 |
+
msg["content"],
|
| 463 |
+
role=msg["role"],
|
| 464 |
+
tokenized_messages=tokenized_messages,
|
| 465 |
+
insertion_points=insertion_points,
|
| 466 |
+
image_list=image_list,
|
| 467 |
+
token_count=token_count,
|
| 468 |
+
**kwargs,
|
| 469 |
+
)
|
| 470 |
+
tokenized_messages_batch.append(torch.cat(tokenized_messages, dim=0).to(torch.long))
|
| 471 |
+
image_insertion_points_batch.append(torch.tensor(insertion_points, dtype=torch.long))
|
| 472 |
+
|
| 473 |
+
if msgs and self.asst_end_tokens and msgs[-1]["role"].lower() == "assistant":
|
| 474 |
+
# Remove the assistant end tokens from the final message
|
| 475 |
+
end_token_len = len(self.asst_end_tokens)
|
| 476 |
+
tokenized_messages_batch[-1] = tokenized_messages_batch[-1][:-end_token_len]
|
| 477 |
+
if msgs and self.asst_start_tokens and msgs[-1]["role"].lower() == "user":
|
| 478 |
+
# Remove the assistant end tokens from the final message
|
| 479 |
+
end_token_len = len(self.asst_end_tokens)
|
| 480 |
+
tokenized_messages_batch[-1] = torch.cat(
|
| 481 |
+
[
|
| 482 |
+
tokenized_messages_batch[-1],
|
| 483 |
+
torch.Tensor(self.asst_start_tokens).to(torch.long),
|
| 484 |
+
]
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
input_ids, attention_mask, image_embeds_insertion_points = self.pad_tokenized_messages(
|
| 488 |
+
tokenized_messages_batch, image_insertion_points_batch
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
if image_list:
|
| 492 |
+
assert sum(img is None for img in image_list) % len(image_list) == 0, (
|
| 493 |
+
"Either all or no image must be None."
|
| 494 |
+
)
|
| 495 |
+
pixel_values: None | torch.Tensor | list[torch.Tensor]
|
| 496 |
+
if image_list[0] is None:
|
| 497 |
+
pixel_values = None
|
| 498 |
+
else:
|
| 499 |
+
pixel_values = cast(list[torch.Tensor], image_list)
|
| 500 |
+
return ProcessorOutput(
|
| 501 |
+
input_ids=input_ids,
|
| 502 |
+
image_embeds_insertion_points=image_embeds_insertion_points,
|
| 503 |
+
attention_mask=attention_mask,
|
| 504 |
+
pixel_values=pixel_values,
|
| 505 |
+
)
|
processing_qwen2_5vl_casa.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any
|
| 2 |
+
|
| 3 |
+
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
|
| 4 |
+
|
| 5 |
+
from .processing import BaseProcessor, QwenImageProcessor
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class QwenCASAProcessor(BaseProcessor):
|
| 9 |
+
attributes = ["tokenizer"]
|
| 10 |
+
tokenizer_class = "Qwen2Tokenizer"
|
| 11 |
+
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
tokenizer: Qwen2Tokenizer,
|
| 15 |
+
pre_image_tokens: tuple[int, ...] = (151652,),
|
| 16 |
+
post_image_tokens: tuple[int, ...] = (151653,),
|
| 17 |
+
system_start_tokens: tuple[int, ...] = (151644, 8948, 198),
|
| 18 |
+
system_end_tokens: tuple[int, ...] = (151645, 198),
|
| 19 |
+
user_start_tokens: tuple[int, ...] = (151644, 872, 198),
|
| 20 |
+
user_end_tokens: tuple[int, ...] = (151645, 198),
|
| 21 |
+
asst_start_tokens: tuple[int, ...] = (151644, 77091, 198),
|
| 22 |
+
asst_end_tokens: tuple[int, ...] = (151645, 198),
|
| 23 |
+
image_size: int = 448,
|
| 24 |
+
**kwargs: Any,
|
| 25 |
+
):
|
| 26 |
+
del kwargs
|
| 27 |
+
super().__init__(
|
| 28 |
+
tokenizer=tokenizer,
|
| 29 |
+
pre_image_tokens=pre_image_tokens,
|
| 30 |
+
post_image_tokens=post_image_tokens,
|
| 31 |
+
system_start_tokens=system_start_tokens,
|
| 32 |
+
system_end_tokens=system_end_tokens,
|
| 33 |
+
user_start_tokens=user_start_tokens,
|
| 34 |
+
user_end_tokens=user_end_tokens,
|
| 35 |
+
asst_start_tokens=asst_start_tokens,
|
| 36 |
+
asst_end_tokens=asst_end_tokens,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
self._image_processor = QwenImageProcessor(img_size=image_size)
|
processor_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_qwen2_5vl_casa.QwenCASAProcessor"
|
| 4 |
+
},
|
| 5 |
+
"image_size": 448,
|
| 6 |
+
"post_image_tokens": [
|
| 7 |
+
151653
|
| 8 |
+
],
|
| 9 |
+
"pre_image_tokens": [
|
| 10 |
+
151652
|
| 11 |
+
],
|
| 12 |
+
"processor_class": "QwenCASAProcessor"
|
| 13 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"151643": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"151644": {
|
| 13 |
+
"content": "<|im_start|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151645": {
|
| 21 |
+
"content": "<|im_end|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"151646": {
|
| 29 |
+
"content": "<|object_ref_start|>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"151647": {
|
| 37 |
+
"content": "<|object_ref_end|>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"151648": {
|
| 45 |
+
"content": "<|box_start|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"151649": {
|
| 53 |
+
"content": "<|box_end|>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"151650": {
|
| 61 |
+
"content": "<|quad_start|>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"151651": {
|
| 69 |
+
"content": "<|quad_end|>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"151652": {
|
| 77 |
+
"content": "<|vision_start|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"151653": {
|
| 85 |
+
"content": "<|vision_end|>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"151654": {
|
| 93 |
+
"content": "<|vision_pad|>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"151655": {
|
| 101 |
+
"content": "<|image_pad|>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"151656": {
|
| 109 |
+
"content": "<|video_pad|>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
},
|
| 116 |
+
"151657": {
|
| 117 |
+
"content": "<tool_call>",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": false
|
| 123 |
+
},
|
| 124 |
+
"151658": {
|
| 125 |
+
"content": "</tool_call>",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": false
|
| 131 |
+
},
|
| 132 |
+
"151659": {
|
| 133 |
+
"content": "<|fim_prefix|>",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": false
|
| 139 |
+
},
|
| 140 |
+
"151660": {
|
| 141 |
+
"content": "<|fim_middle|>",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": false
|
| 147 |
+
},
|
| 148 |
+
"151661": {
|
| 149 |
+
"content": "<|fim_suffix|>",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": false
|
| 155 |
+
},
|
| 156 |
+
"151662": {
|
| 157 |
+
"content": "<|fim_pad|>",
|
| 158 |
+
"lstrip": false,
|
| 159 |
+
"normalized": false,
|
| 160 |
+
"rstrip": false,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": false
|
| 163 |
+
},
|
| 164 |
+
"151663": {
|
| 165 |
+
"content": "<|repo_name|>",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": false
|
| 171 |
+
},
|
| 172 |
+
"151664": {
|
| 173 |
+
"content": "<|file_sep|>",
|
| 174 |
+
"lstrip": false,
|
| 175 |
+
"normalized": false,
|
| 176 |
+
"rstrip": false,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": false
|
| 179 |
+
}
|
| 180 |
+
},
|
| 181 |
+
"additional_special_tokens": [
|
| 182 |
+
"<|im_start|>",
|
| 183 |
+
"<|im_end|>",
|
| 184 |
+
"<|object_ref_start|>",
|
| 185 |
+
"<|object_ref_end|>",
|
| 186 |
+
"<|box_start|>",
|
| 187 |
+
"<|box_end|>",
|
| 188 |
+
"<|quad_start|>",
|
| 189 |
+
"<|quad_end|>",
|
| 190 |
+
"<|vision_start|>",
|
| 191 |
+
"<|vision_end|>",
|
| 192 |
+
"<|vision_pad|>",
|
| 193 |
+
"<|image_pad|>",
|
| 194 |
+
"<|video_pad|>"
|
| 195 |
+
],
|
| 196 |
+
"bos_token": null,
|
| 197 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"model_max_length": 131072,
|
| 202 |
+
"pad_token": "<|endoftext|>",
|
| 203 |
+
"split_special_tokens": false,
|
| 204 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 205 |
+
"unk_token": null,
|
| 206 |
+
"add_bos_token": false
|
| 207 |
+
}
|
utils.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pylint: disable=protected-access
|
| 2 |
+
"""Utils to handle CASA layers construction"""
|
| 3 |
+
|
| 4 |
+
from contextlib import contextmanager
|
| 5 |
+
from dataclasses import dataclass, fields
|
| 6 |
+
from typing import Any, Callable, Generic, TypeVar
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def delta_w_factory(
|
| 12 |
+
org_lin: torch.nn.Linear, new_lin: torch.nn.Linear
|
| 13 |
+
) -> Callable[[torch.Tensor], torch.Tensor]:
|
| 14 |
+
"""Factory for building linear op where the weights are the sum of two layers' weights"""
|
| 15 |
+
|
| 16 |
+
def _delta_w_fwd(input: torch.Tensor) -> torch.Tensor:
|
| 17 |
+
nonlocal org_lin, new_lin
|
| 18 |
+
bias = None if org_lin.bias is None else org_lin.bias + new_lin.bias
|
| 19 |
+
return torch.nn.functional.linear(input, org_lin.weight + new_lin.weight, bias)
|
| 20 |
+
|
| 21 |
+
return _delta_w_fwd
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class StreamingState:
|
| 26 |
+
"""Streaming State used by CASA layers at inference to save
|
| 27 |
+
e.g. the offset, the KV Cache and other persistent states"""
|
| 28 |
+
|
| 29 |
+
offset: int = 0
|
| 30 |
+
|
| 31 |
+
def _is_valid_field(self, key: str) -> bool:
|
| 32 |
+
return key in {x.name for x in fields(self)}
|
| 33 |
+
|
| 34 |
+
def _init_field(self, key: str) -> None:
|
| 35 |
+
"""Init function for non-arggment dependent defauls"""
|
| 36 |
+
assert self._is_valid_field(key)
|
| 37 |
+
if key == "offset":
|
| 38 |
+
self.offset = 0
|
| 39 |
+
else:
|
| 40 |
+
# for fields which should be set explicitly and cannot be auto-initialized
|
| 41 |
+
setattr(self, key, None)
|
| 42 |
+
|
| 43 |
+
def init(self) -> None:
|
| 44 |
+
for key in [x.name for x in fields(self)]:
|
| 45 |
+
self._init_field(key)
|
| 46 |
+
|
| 47 |
+
def _reset_field(self, name: str) -> None:
|
| 48 |
+
"""Resets the given field"""
|
| 49 |
+
self._init_field(name)
|
| 50 |
+
|
| 51 |
+
def reset(self) -> None:
|
| 52 |
+
for f in fields(self):
|
| 53 |
+
self._reset_field(f.name)
|
| 54 |
+
|
| 55 |
+
def _get_field(self, f: str) -> Any:
|
| 56 |
+
"""Get field and init if not"""
|
| 57 |
+
assert self._is_valid_field(f)
|
| 58 |
+
if getattr(self, f) is None:
|
| 59 |
+
self._init_field(f)
|
| 60 |
+
return getattr(self, f)
|
| 61 |
+
|
| 62 |
+
def _set_field(self, f: str, value: Any) -> None:
|
| 63 |
+
assert self._is_valid_field(f)
|
| 64 |
+
setattr(self, f, value)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
StreamingStateT = TypeVar("StreamingStateT", bound=StreamingState)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class StreamingModule(torch.nn.Module, Generic[StreamingStateT]): # pylint: disable=abstract-method
|
| 71 |
+
"""Overrides Audiocraft's Streaming modules with additional small utils"""
|
| 72 |
+
|
| 73 |
+
def __init__(self, state_class: type) -> None:
|
| 74 |
+
torch.nn.Module.__init__(self)
|
| 75 |
+
self.is_streaming: bool = False
|
| 76 |
+
self.enable_viz: tuple[str, ...] = ()
|
| 77 |
+
self._streaming_state: StreamingStateT = state_class()
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def streaming_state(self) -> StreamingStateT:
|
| 81 |
+
return self._streaming_state
|
| 82 |
+
|
| 83 |
+
def _apply_named_streaming(self, fn: Callable):
|
| 84 |
+
"""Apply function to all streaming modules"""
|
| 85 |
+
for name, module in self.named_modules():
|
| 86 |
+
if isinstance(module, StreamingModule):
|
| 87 |
+
fn(name, module)
|
| 88 |
+
|
| 89 |
+
def reset_streaming(self):
|
| 90 |
+
"""Reset the streaming state."""
|
| 91 |
+
|
| 92 |
+
def _reset(_: str, module: StreamingModule):
|
| 93 |
+
module._streaming_state.reset()
|
| 94 |
+
|
| 95 |
+
self._apply_named_streaming(_reset)
|
| 96 |
+
|
| 97 |
+
def _set_streaming(self, streaming: bool, viz: tuple[str, ...] = ()):
|
| 98 |
+
"""Set all streaming modules in streaming mode"""
|
| 99 |
+
|
| 100 |
+
def _set_streaming(_, module: StreamingModule) -> None:
|
| 101 |
+
module.is_streaming = streaming
|
| 102 |
+
module.enable_viz = viz
|
| 103 |
+
if streaming:
|
| 104 |
+
module.streaming_state.init()
|
| 105 |
+
|
| 106 |
+
self._apply_named_streaming(_set_streaming)
|
| 107 |
+
|
| 108 |
+
@contextmanager
|
| 109 |
+
def streaming(self, stream: bool = True, viz: tuple[str, ...] = ()):
|
| 110 |
+
"""Context manager to enter streaming mode. Reset streaming state on exit."""
|
| 111 |
+
self._set_streaming(stream, viz)
|
| 112 |
+
try:
|
| 113 |
+
yield
|
| 114 |
+
finally:
|
| 115 |
+
self._set_streaming(False, ())
|
| 116 |
+
self.reset_streaming()
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|