--- base_model: - Qwen/Qwen2.5-VL-3B-Instruct datasets: - HuggingFaceM4/FineVision - mvp-lab/LLaVA-OneVision-1.5-Instruct-Data language: - en license: cc-by-nc-sa-4.0 pipeline_tag: image-text-to-text library_name: transformers --- # CASA-Qwen2_5-VL-3B This repository contains the model weights for **CASA-Qwen2_5-VL-3B**, introduced in the paper [CASA: Cross-Attention via Self-Attention for Efficient Vision-Language Fusion](https://huggingface.co/papers/2512.19535). CASA is a vision-language fusion paradigm that improves on cross-attention while preserving its scalability. This model is a [Qwen-2.5VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) model adapted from token insertion to a cross-attention-based architecture using CASA layers. - **Paper:** [CASA: Cross-Attention via Self-Attention for Efficient Vision-Language Fusion](https://arxiv.org/abs/2512.19535) - **Project Page:** [kyutai.org/casa](https://kyutai.org/casa) - **Code:** [github.com/kyutai-labs/casa](https://github.com/kyutai-labs/casa) ## Sample Usage This model requires `trust_remote_code=True` to load the custom architecture. Below is a snippet to run inference using `transformers`. ```python import torch from transformers.models.auto.modeling_auto import AutoModel from transformers.models.auto.processing_auto import AutoProcessor model_id = "kyutai/CASA-Qwen2_5-VL-3B" model = AutoModel.from_pretrained( model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True, ).cuda() processor = AutoProcessor.from_pretrained( model_id, trust_remote_code=True, ) conversation = [ { "role": "user", "content": [ { "type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.png", }, { "type": "text", "text": "Describe this image.", }, ], }, ] inputs = processor.tokenize_messages(messages=conversation) inputs = inputs.to(model.device) input_len = inputs["input_ids"].shape[1] output_ids = model.generate_from_image( **inputs, max_new_tokens=512, pre_image_tokens=processor.pre_image_tokens, post_image_tokens=processor.post_image_tokens, eos_token_id=model.generation_config.eos_token_id, )[0, input_len:] response = processor.tokenizer.decode(output_ids, skip_special_tokens=True) print(response) ``` ## Citation ```bibtex @article{kyutai2025casa, author = {Moritz B\"ohle and Am\'elie Royer and Juliette Marrie and Edouard Grave and Patrick P\'erez}, year = {2025}, title = {CASA: Cross-Attention via Self-Attention for Efficient Vision-Language Fusion}, journal = {ArXiv}, url = {https://arxiv.org/abs/2512.19535} } ``` ## License The code in the official repository is provided under the **MIT license**. The weights for this model are released under the **CC-BY-NC-SA 4.0 license**. Additionally, as this model includes weights from Qwen2.5-VL-3B, it is subject to the [Qwen RESEARCH LICENSE AGREEMENT](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct/blob/main/LICENSE).