Remove old InternLM2 models before update
Browse filesCo-authored-by: Cursor <cursoragent@cursor.com>
- internlm2-1.8b-cpu-int4-awq/genai_config.json +0 -49
- internlm2-1.8b-cpu-int4-awq/model.onnx +0 -3
- internlm2-1.8b-cpu-int4-awq/model.onnx.data +0 -3
- internlm2-1.8b-cpu-int4-awq/special_tokens_map.json +0 -6
- internlm2-1.8b-cpu-int4-awq/tokenization_internlm2.py +0 -236
- internlm2-1.8b-cpu-int4-awq/tokenization_internlm2_fast.py +0 -214
- internlm2-1.8b-cpu-int4-awq/tokenizer.json +0 -3
- internlm2-1.8b-cpu-int4-awq/tokenizer.model +0 -3
- internlm2-1.8b-cpu-int4-awq/tokenizer_config.json +0 -46
- internlm2-7b-cpu-int4-awq/genai_config.json +0 -49
- internlm2-7b-cpu-int4-awq/model.onnx +0 -3
- internlm2-7b-cpu-int4-awq/model.onnx.data +0 -3
- internlm2-7b-cpu-int4-awq/special_tokens_map.json +0 -6
- internlm2-7b-cpu-int4-awq/tokenization_internlm2.py +0 -236
- internlm2-7b-cpu-int4-awq/tokenization_internlm2_fast.py +0 -214
- internlm2-7b-cpu-int4-awq/tokenizer.json +0 -3
- internlm2-7b-cpu-int4-awq/tokenizer.model +0 -3
- internlm2-7b-cpu-int4-awq/tokenizer_config.json +0 -40
internlm2-1.8b-cpu-int4-awq/genai_config.json
DELETED
|
@@ -1,49 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"model": {
|
| 3 |
-
"bos_token_id": 1,
|
| 4 |
-
"context_length": 32768,
|
| 5 |
-
"decoder": {
|
| 6 |
-
"session_options": {
|
| 7 |
-
"log_id": "onnxruntime-genai",
|
| 8 |
-
"provider_options": []
|
| 9 |
-
},
|
| 10 |
-
"filename": "model.onnx",
|
| 11 |
-
"head_size": 128,
|
| 12 |
-
"hidden_size": 2048,
|
| 13 |
-
"inputs": {
|
| 14 |
-
"input_ids": "input_ids",
|
| 15 |
-
"attention_mask": "attention_mask",
|
| 16 |
-
"past_key_names": "past_key_values.%d.key",
|
| 17 |
-
"past_value_names": "past_key_values.%d.value"
|
| 18 |
-
},
|
| 19 |
-
"outputs": {
|
| 20 |
-
"logits": "logits",
|
| 21 |
-
"present_key_names": "present.%d.key",
|
| 22 |
-
"present_value_names": "present.%d.value"
|
| 23 |
-
},
|
| 24 |
-
"num_attention_heads": 16,
|
| 25 |
-
"num_hidden_layers": 24,
|
| 26 |
-
"num_key_value_heads": 8
|
| 27 |
-
},
|
| 28 |
-
"eos_token_id": 2,
|
| 29 |
-
"pad_token_id": 2,
|
| 30 |
-
"type": "llama",
|
| 31 |
-
"vocab_size": 92544
|
| 32 |
-
},
|
| 33 |
-
"search": {
|
| 34 |
-
"diversity_penalty": 0.0,
|
| 35 |
-
"do_sample": false,
|
| 36 |
-
"early_stopping": true,
|
| 37 |
-
"length_penalty": 1.0,
|
| 38 |
-
"max_length": 32768,
|
| 39 |
-
"min_length": 0,
|
| 40 |
-
"no_repeat_ngram_size": 0,
|
| 41 |
-
"num_beams": 1,
|
| 42 |
-
"num_return_sequences": 1,
|
| 43 |
-
"past_present_share_buffer": true,
|
| 44 |
-
"repetition_penalty": 1.0,
|
| 45 |
-
"temperature": 1.0,
|
| 46 |
-
"top_k": 50,
|
| 47 |
-
"top_p": 1.0
|
| 48 |
-
}
|
| 49 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/model.onnx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:90f55a90d9e73491e9aa0dbb88098a20b8def5f9c6c129f9b2effb42f9f0fac0
|
| 3 |
-
size 179593
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/model.onnx.data
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:3dc0644a406bab41fc434b82d5c8d15052a192ac65c04b5c1390b3e6c55a1490
|
| 3 |
-
size 1837563904
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/special_tokens_map.json
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"bos_token": "<s>",
|
| 3 |
-
"eos_token": "</s>",
|
| 4 |
-
"pad_token": "</s>",
|
| 5 |
-
"unk_token": "<unk>"
|
| 6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/tokenization_internlm2.py
DELETED
|
@@ -1,236 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
| 5 |
-
#
|
| 6 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
-
# you may not use this file except in compliance with the License.
|
| 8 |
-
# You may obtain a copy of the License at
|
| 9 |
-
#
|
| 10 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
-
#
|
| 12 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
-
# See the License for the specific language governing permissions and
|
| 16 |
-
# limitations under the License.
|
| 17 |
-
|
| 18 |
-
"""Tokenization classes for InternLM."""
|
| 19 |
-
import os
|
| 20 |
-
from shutil import copyfile
|
| 21 |
-
from typing import Any, Dict, List, Optional, Tuple
|
| 22 |
-
|
| 23 |
-
import sentencepiece as spm
|
| 24 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 25 |
-
from transformers.utils import logging
|
| 26 |
-
|
| 27 |
-
logger = logging.get_logger(__name__)
|
| 28 |
-
|
| 29 |
-
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
| 30 |
-
|
| 31 |
-
PRETRAINED_VOCAB_FILES_MAP = {}
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
| 35 |
-
class InternLM2Tokenizer(PreTrainedTokenizer):
|
| 36 |
-
"""
|
| 37 |
-
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 38 |
-
|
| 39 |
-
Args:
|
| 40 |
-
vocab_file (`str`):
|
| 41 |
-
Path to the vocabulary file.
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
| 45 |
-
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 46 |
-
model_input_names = ["input_ids", "attention_mask"]
|
| 47 |
-
_auto_class = "AutoTokenizer"
|
| 48 |
-
|
| 49 |
-
def __init__(
|
| 50 |
-
self,
|
| 51 |
-
vocab_file,
|
| 52 |
-
unk_token="<unk>",
|
| 53 |
-
bos_token="<s>",
|
| 54 |
-
eos_token="</s>",
|
| 55 |
-
pad_token="</s>",
|
| 56 |
-
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 57 |
-
add_bos_token=True,
|
| 58 |
-
add_eos_token=False,
|
| 59 |
-
decode_with_prefix_space=False,
|
| 60 |
-
clean_up_tokenization_spaces=False,
|
| 61 |
-
**kwargs,
|
| 62 |
-
):
|
| 63 |
-
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 64 |
-
self.vocab_file = vocab_file
|
| 65 |
-
self.add_bos_token = add_bos_token
|
| 66 |
-
self.add_eos_token = add_eos_token
|
| 67 |
-
self.decode_with_prefix_space = decode_with_prefix_space
|
| 68 |
-
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 69 |
-
self.sp_model.Load(vocab_file)
|
| 70 |
-
self._no_prefix_space_tokens = None
|
| 71 |
-
super().__init__(
|
| 72 |
-
bos_token=bos_token,
|
| 73 |
-
eos_token=eos_token,
|
| 74 |
-
unk_token=unk_token,
|
| 75 |
-
pad_token=pad_token,
|
| 76 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 77 |
-
**kwargs,
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
@property
|
| 81 |
-
def no_prefix_space_tokens(self):
|
| 82 |
-
if self._no_prefix_space_tokens is None:
|
| 83 |
-
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
| 84 |
-
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
| 85 |
-
return self._no_prefix_space_tokens
|
| 86 |
-
|
| 87 |
-
@property
|
| 88 |
-
def vocab_size(self):
|
| 89 |
-
"""Returns vocab size"""
|
| 90 |
-
return self.sp_model.get_piece_size()
|
| 91 |
-
|
| 92 |
-
@property
|
| 93 |
-
def bos_token_id(self) -> Optional[int]:
|
| 94 |
-
return self.sp_model.bos_id()
|
| 95 |
-
|
| 96 |
-
@property
|
| 97 |
-
def eos_token_id(self) -> Optional[int]:
|
| 98 |
-
return self.sp_model.eos_id()
|
| 99 |
-
|
| 100 |
-
def get_vocab(self):
|
| 101 |
-
"""Returns vocab as a dict"""
|
| 102 |
-
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 103 |
-
vocab.update(self.added_tokens_encoder)
|
| 104 |
-
return vocab
|
| 105 |
-
|
| 106 |
-
def _tokenize(self, text):
|
| 107 |
-
"""Returns a tokenized string."""
|
| 108 |
-
return self.sp_model.encode(text, out_type=str)
|
| 109 |
-
|
| 110 |
-
def _convert_token_to_id(self, token):
|
| 111 |
-
"""Converts a token (str) in an id using the vocab."""
|
| 112 |
-
return self.sp_model.piece_to_id(token)
|
| 113 |
-
|
| 114 |
-
def _convert_id_to_token(self, index):
|
| 115 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 116 |
-
token = self.sp_model.IdToPiece(index)
|
| 117 |
-
return token
|
| 118 |
-
|
| 119 |
-
def _maybe_add_prefix_space(self, tokens, decoded):
|
| 120 |
-
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
| 121 |
-
return " " + decoded
|
| 122 |
-
else:
|
| 123 |
-
return decoded
|
| 124 |
-
|
| 125 |
-
def convert_tokens_to_string(self, tokens):
|
| 126 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
| 127 |
-
current_sub_tokens = []
|
| 128 |
-
out_string = ""
|
| 129 |
-
prev_is_special = False
|
| 130 |
-
for token in tokens:
|
| 131 |
-
# make sure that special tokens are not decoded using sentencepiece model
|
| 132 |
-
if token in self.all_special_tokens:
|
| 133 |
-
if not prev_is_special:
|
| 134 |
-
out_string += " "
|
| 135 |
-
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 136 |
-
prev_is_special = True
|
| 137 |
-
current_sub_tokens = []
|
| 138 |
-
else:
|
| 139 |
-
current_sub_tokens.append(token)
|
| 140 |
-
prev_is_special = False
|
| 141 |
-
out_string += self.sp_model.decode(current_sub_tokens)
|
| 142 |
-
out_string = self.clean_up_tokenization(out_string)
|
| 143 |
-
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
| 144 |
-
return out_string[1:]
|
| 145 |
-
|
| 146 |
-
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 147 |
-
"""
|
| 148 |
-
Save the vocabulary and special tokens file to a directory.
|
| 149 |
-
|
| 150 |
-
Args:
|
| 151 |
-
save_directory (`str`):
|
| 152 |
-
The directory in which to save the vocabulary.
|
| 153 |
-
|
| 154 |
-
Returns:
|
| 155 |
-
`Tuple(str)`: Paths to the files saved.
|
| 156 |
-
"""
|
| 157 |
-
if not os.path.isdir(save_directory):
|
| 158 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 159 |
-
return
|
| 160 |
-
out_vocab_file = os.path.join(
|
| 161 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 165 |
-
copyfile(self.vocab_file, out_vocab_file)
|
| 166 |
-
elif not os.path.isfile(self.vocab_file):
|
| 167 |
-
with open(out_vocab_file, "wb") as fi:
|
| 168 |
-
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 169 |
-
fi.write(content_spiece_model)
|
| 170 |
-
|
| 171 |
-
return (out_vocab_file,)
|
| 172 |
-
|
| 173 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 174 |
-
if self.add_bos_token:
|
| 175 |
-
bos_token_ids = [self.bos_token_id]
|
| 176 |
-
else:
|
| 177 |
-
bos_token_ids = []
|
| 178 |
-
|
| 179 |
-
output = bos_token_ids + token_ids_0
|
| 180 |
-
|
| 181 |
-
if token_ids_1 is not None:
|
| 182 |
-
output = output + token_ids_1
|
| 183 |
-
|
| 184 |
-
if self.add_eos_token:
|
| 185 |
-
output = output + [self.eos_token_id]
|
| 186 |
-
|
| 187 |
-
return output
|
| 188 |
-
|
| 189 |
-
def get_special_tokens_mask(
|
| 190 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 191 |
-
) -> List[int]:
|
| 192 |
-
"""
|
| 193 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 194 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
token_ids_0 (`List[int]`):
|
| 198 |
-
List of IDs.
|
| 199 |
-
token_ids_1 (`List[int]`, *optional*):
|
| 200 |
-
Optional second list of IDs for sequence pairs.
|
| 201 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 202 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
| 203 |
-
|
| 204 |
-
Returns:
|
| 205 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 206 |
-
"""
|
| 207 |
-
if already_has_special_tokens:
|
| 208 |
-
return super().get_special_tokens_mask(
|
| 209 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
if token_ids_1 is None:
|
| 213 |
-
return [1] + ([0] * len(token_ids_0)) + [1]
|
| 214 |
-
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
| 215 |
-
|
| 216 |
-
def create_token_type_ids_from_sequences(
|
| 217 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 218 |
-
) -> List[int]:
|
| 219 |
-
"""
|
| 220 |
-
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
| 221 |
-
use of token type ids, therefore a list of zeros is returned.
|
| 222 |
-
|
| 223 |
-
Args:
|
| 224 |
-
token_ids_0 (`List[int]`):
|
| 225 |
-
List of IDs.
|
| 226 |
-
token_ids_1 (`List[int]`, *optional*):
|
| 227 |
-
Optional second list of IDs for sequence pairs.
|
| 228 |
-
|
| 229 |
-
Returns:
|
| 230 |
-
`List[int]`: List of zeros.
|
| 231 |
-
"""
|
| 232 |
-
eos = [self.eos_token_id]
|
| 233 |
-
|
| 234 |
-
if token_ids_1 is None:
|
| 235 |
-
return len(token_ids_0 + eos) * [0]
|
| 236 |
-
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/tokenization_internlm2_fast.py
DELETED
|
@@ -1,214 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
| 5 |
-
#
|
| 6 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
-
# you may not use this file except in compliance with the License.
|
| 8 |
-
# You may obtain a copy of the License at
|
| 9 |
-
#
|
| 10 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
-
#
|
| 12 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
-
# See the License for the specific language governing permissions and
|
| 16 |
-
# limitations under the License.
|
| 17 |
-
|
| 18 |
-
"""Tokenization Fast class for InternLM."""
|
| 19 |
-
import os
|
| 20 |
-
from shutil import copyfile
|
| 21 |
-
from typing import Any, Dict, Optional, Tuple
|
| 22 |
-
|
| 23 |
-
from tokenizers import processors, decoders, Tokenizer, normalizers
|
| 24 |
-
from tokenizers.models import BPE
|
| 25 |
-
|
| 26 |
-
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 27 |
-
from transformers.utils import logging
|
| 28 |
-
|
| 29 |
-
from transformers.convert_slow_tokenizer import (
|
| 30 |
-
SLOW_TO_FAST_CONVERTERS,
|
| 31 |
-
SpmConverter,
|
| 32 |
-
SentencePieceExtractor,
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
from .tokenization_internlm2 import InternLM2Tokenizer
|
| 36 |
-
|
| 37 |
-
logger = logging.get_logger(__name__)
|
| 38 |
-
|
| 39 |
-
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
| 40 |
-
|
| 41 |
-
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
| 42 |
-
class InternLM2Converter(SpmConverter):
|
| 43 |
-
handle_byte_fallback = True
|
| 44 |
-
|
| 45 |
-
def vocab(self, proto):
|
| 46 |
-
vocab = [
|
| 47 |
-
("<unk>", 0.0),
|
| 48 |
-
("<s>", 0.0),
|
| 49 |
-
("</s>", 0.0),
|
| 50 |
-
]
|
| 51 |
-
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
| 52 |
-
return vocab
|
| 53 |
-
|
| 54 |
-
def unk_id(self, proto):
|
| 55 |
-
unk_id = 0
|
| 56 |
-
return unk_id
|
| 57 |
-
|
| 58 |
-
def decoder(self, replacement, add_prefix_space):
|
| 59 |
-
decoders_sequence = [
|
| 60 |
-
decoders.Replace("▁", " "),
|
| 61 |
-
decoders.ByteFallback(),
|
| 62 |
-
decoders.Fuse(),
|
| 63 |
-
]
|
| 64 |
-
if self.proto.normalizer_spec.add_dummy_prefix:
|
| 65 |
-
decoders_sequence.append(decoders.Strip(content=" ", left=1))
|
| 66 |
-
return decoders.Sequence(decoders_sequence)
|
| 67 |
-
|
| 68 |
-
def tokenizer(self, proto):
|
| 69 |
-
model_type = proto.trainer_spec.model_type
|
| 70 |
-
vocab_scores = self.vocab(proto)
|
| 71 |
-
# special tokens
|
| 72 |
-
added_tokens = self.original_tokenizer.added_tokens_decoder
|
| 73 |
-
for i in range(len(vocab_scores)):
|
| 74 |
-
piece, score = vocab_scores[i]
|
| 75 |
-
if i in added_tokens:
|
| 76 |
-
vocab_scores[i] = (added_tokens[i].content, score)
|
| 77 |
-
if model_type == 1:
|
| 78 |
-
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
|
| 79 |
-
|
| 80 |
-
elif model_type == 2:
|
| 81 |
-
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
| 82 |
-
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
| 83 |
-
tokenizer = Tokenizer(
|
| 84 |
-
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
| 85 |
-
)
|
| 86 |
-
tokenizer.add_special_tokens(
|
| 87 |
-
[ added_token for index, added_token in added_tokens.items()]
|
| 88 |
-
)
|
| 89 |
-
else:
|
| 90 |
-
raise Exception(
|
| 91 |
-
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
return tokenizer
|
| 95 |
-
|
| 96 |
-
def normalizer(self, proto):
|
| 97 |
-
normalizers_list = []
|
| 98 |
-
if proto.normalizer_spec.add_dummy_prefix:
|
| 99 |
-
normalizers_list.append(normalizers.Prepend(prepend="▁"))
|
| 100 |
-
normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
|
| 101 |
-
return normalizers.Sequence(normalizers_list)
|
| 102 |
-
|
| 103 |
-
def pre_tokenizer(self, replacement, add_prefix_space):
|
| 104 |
-
return None
|
| 105 |
-
|
| 106 |
-
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
| 110 |
-
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
| 111 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
| 112 |
-
slow_tokenizer_class = InternLM2Tokenizer
|
| 113 |
-
padding_side = "left"
|
| 114 |
-
model_input_names = ["input_ids", "attention_mask"]
|
| 115 |
-
_auto_class = "AutoTokenizer"
|
| 116 |
-
|
| 117 |
-
def __init__(
|
| 118 |
-
self,
|
| 119 |
-
vocab_file,
|
| 120 |
-
unk_token="<unk>",
|
| 121 |
-
bos_token="<s>",
|
| 122 |
-
eos_token="</s>",
|
| 123 |
-
pad_token="</s>",
|
| 124 |
-
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 125 |
-
add_bos_token=True,
|
| 126 |
-
add_eos_token=False,
|
| 127 |
-
decode_with_prefix_space=False,
|
| 128 |
-
clean_up_tokenization_spaces=False,
|
| 129 |
-
**kwargs,
|
| 130 |
-
):
|
| 131 |
-
super().__init__(
|
| 132 |
-
vocab_file=vocab_file,
|
| 133 |
-
unk_token=unk_token,
|
| 134 |
-
bos_token=bos_token,
|
| 135 |
-
eos_token=eos_token,
|
| 136 |
-
pad_token=pad_token,
|
| 137 |
-
sp_model_kwargs=sp_model_kwargs,
|
| 138 |
-
add_bos_token=add_bos_token,
|
| 139 |
-
add_eos_token=add_eos_token,
|
| 140 |
-
decode_with_prefix_space=decode_with_prefix_space,
|
| 141 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 142 |
-
**kwargs,
|
| 143 |
-
)
|
| 144 |
-
self._add_bos_token = add_bos_token
|
| 145 |
-
self._add_eos_token = add_eos_token
|
| 146 |
-
self.update_post_processor()
|
| 147 |
-
self.vocab_file = vocab_file
|
| 148 |
-
|
| 149 |
-
@property
|
| 150 |
-
def can_save_slow_tokenizer(self) -> bool:
|
| 151 |
-
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
| 152 |
-
|
| 153 |
-
def update_post_processor(self):
|
| 154 |
-
"""
|
| 155 |
-
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
| 156 |
-
"""
|
| 157 |
-
bos = self.bos_token
|
| 158 |
-
bos_token_id = self.bos_token_id
|
| 159 |
-
if bos is None and self.add_bos_token:
|
| 160 |
-
raise ValueError("add_bos_token = True but bos_token = None")
|
| 161 |
-
|
| 162 |
-
eos = self.eos_token
|
| 163 |
-
eos_token_id = self.eos_token_id
|
| 164 |
-
if eos is None and self.add_eos_token:
|
| 165 |
-
raise ValueError("add_eos_token = True but eos_token = None")
|
| 166 |
-
|
| 167 |
-
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
| 168 |
-
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
| 169 |
-
|
| 170 |
-
special_tokens = []
|
| 171 |
-
if self.add_bos_token:
|
| 172 |
-
special_tokens.append((bos, bos_token_id))
|
| 173 |
-
if self.add_eos_token:
|
| 174 |
-
special_tokens.append((eos, eos_token_id))
|
| 175 |
-
self._tokenizer.post_processor = processors.TemplateProcessing(
|
| 176 |
-
single=single, pair=pair, special_tokens=special_tokens
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
@property
|
| 180 |
-
def add_eos_token(self):
|
| 181 |
-
return self._add_eos_token
|
| 182 |
-
|
| 183 |
-
@property
|
| 184 |
-
def add_bos_token(self):
|
| 185 |
-
return self._add_bos_token
|
| 186 |
-
|
| 187 |
-
@add_eos_token.setter
|
| 188 |
-
def add_eos_token(self, value):
|
| 189 |
-
self._add_eos_token = value
|
| 190 |
-
self.update_post_processor()
|
| 191 |
-
|
| 192 |
-
@add_bos_token.setter
|
| 193 |
-
def add_bos_token(self, value):
|
| 194 |
-
self._add_bos_token = value
|
| 195 |
-
self.update_post_processor()
|
| 196 |
-
|
| 197 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 198 |
-
if not self.can_save_slow_tokenizer:
|
| 199 |
-
raise ValueError(
|
| 200 |
-
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
| 201 |
-
"tokenizer."
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
if not os.path.isdir(save_directory):
|
| 205 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 206 |
-
return
|
| 207 |
-
out_vocab_file = os.path.join(
|
| 208 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 209 |
-
)
|
| 210 |
-
|
| 211 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
| 212 |
-
copyfile(self.vocab_file, out_vocab_file)
|
| 213 |
-
|
| 214 |
-
return (out_vocab_file,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/tokenizer.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:53bf68bdb380527f8c67449108021556e11c9de61aee72f818778143a99ecb50
|
| 3 |
-
size 10540375
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/tokenizer.model
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
| 3 |
-
size 1477754
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-1.8b-cpu-int4-awq/tokenizer_config.json
DELETED
|
@@ -1,46 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"add_bos_token": true,
|
| 3 |
-
"add_eos_token": false,
|
| 4 |
-
"added_tokens_decoder": {
|
| 5 |
-
"0": {
|
| 6 |
-
"content": "<unk>",
|
| 7 |
-
"lstrip": false,
|
| 8 |
-
"normalized": false,
|
| 9 |
-
"rstrip": false,
|
| 10 |
-
"single_word": false,
|
| 11 |
-
"special": true
|
| 12 |
-
},
|
| 13 |
-
"1": {
|
| 14 |
-
"content": "<s>",
|
| 15 |
-
"lstrip": false,
|
| 16 |
-
"normalized": false,
|
| 17 |
-
"rstrip": false,
|
| 18 |
-
"single_word": false,
|
| 19 |
-
"special": true
|
| 20 |
-
},
|
| 21 |
-
"2": {
|
| 22 |
-
"content": "</s>",
|
| 23 |
-
"lstrip": false,
|
| 24 |
-
"normalized": false,
|
| 25 |
-
"rstrip": false,
|
| 26 |
-
"single_word": false,
|
| 27 |
-
"special": true
|
| 28 |
-
}
|
| 29 |
-
},
|
| 30 |
-
"auto_map": {
|
| 31 |
-
"AutoTokenizer": [
|
| 32 |
-
"tokenization_internlm2.InternLM2Tokenizer",
|
| 33 |
-
"tokenization_internlm2_fast.InternLM2TokenizerFast"
|
| 34 |
-
]
|
| 35 |
-
},
|
| 36 |
-
"bos_token": "<s>",
|
| 37 |
-
"clean_up_tokenization_spaces": false,
|
| 38 |
-
"decode_with_prefix_space": false,
|
| 39 |
-
"eos_token": "</s>",
|
| 40 |
-
"extra_special_tokens": {},
|
| 41 |
-
"model_max_length": 1000000000000000019884624838656,
|
| 42 |
-
"pad_token": "</s>",
|
| 43 |
-
"sp_model_kwargs": null,
|
| 44 |
-
"tokenizer_class": "InternLM2Tokenizer",
|
| 45 |
-
"unk_token": "<unk>"
|
| 46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/genai_config.json
DELETED
|
@@ -1,49 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"model": {
|
| 3 |
-
"bos_token_id": 1,
|
| 4 |
-
"context_length": 32768,
|
| 5 |
-
"decoder": {
|
| 6 |
-
"session_options": {
|
| 7 |
-
"log_id": "onnxruntime-genai",
|
| 8 |
-
"provider_options": []
|
| 9 |
-
},
|
| 10 |
-
"filename": "model.onnx",
|
| 11 |
-
"head_size": 128,
|
| 12 |
-
"hidden_size": 4096,
|
| 13 |
-
"inputs": {
|
| 14 |
-
"input_ids": "input_ids",
|
| 15 |
-
"attention_mask": "attention_mask",
|
| 16 |
-
"past_key_names": "past_key_values.%d.key",
|
| 17 |
-
"past_value_names": "past_key_values.%d.value"
|
| 18 |
-
},
|
| 19 |
-
"outputs": {
|
| 20 |
-
"logits": "logits",
|
| 21 |
-
"present_key_names": "present.%d.key",
|
| 22 |
-
"present_value_names": "present.%d.value"
|
| 23 |
-
},
|
| 24 |
-
"num_attention_heads": 32,
|
| 25 |
-
"num_hidden_layers": 32,
|
| 26 |
-
"num_key_value_heads": 8
|
| 27 |
-
},
|
| 28 |
-
"eos_token_id": 2,
|
| 29 |
-
"pad_token_id": 2,
|
| 30 |
-
"type": "llama",
|
| 31 |
-
"vocab_size": 92544
|
| 32 |
-
},
|
| 33 |
-
"search": {
|
| 34 |
-
"diversity_penalty": 0.0,
|
| 35 |
-
"do_sample": false,
|
| 36 |
-
"early_stopping": true,
|
| 37 |
-
"length_penalty": 1.0,
|
| 38 |
-
"max_length": 32768,
|
| 39 |
-
"min_length": 0,
|
| 40 |
-
"no_repeat_ngram_size": 0,
|
| 41 |
-
"num_beams": 1,
|
| 42 |
-
"num_return_sequences": 1,
|
| 43 |
-
"past_present_share_buffer": true,
|
| 44 |
-
"repetition_penalty": 1.0,
|
| 45 |
-
"temperature": 1.0,
|
| 46 |
-
"top_k": 50,
|
| 47 |
-
"top_p": 1.0
|
| 48 |
-
}
|
| 49 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/model.onnx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:862b2f22bc845237107303a06832042c9d4641fab30a740b7ef6dfed99b146c8
|
| 3 |
-
size 239348
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/model.onnx.data
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:8a41e20041f6eb7f1b24f6c539c9bb6681dd7ab5450f5351fa8966d0514f05f7
|
| 3 |
-
size 6133121024
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/special_tokens_map.json
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"bos_token": "<s>",
|
| 3 |
-
"eos_token": "</s>",
|
| 4 |
-
"pad_token": "</s>",
|
| 5 |
-
"unk_token": "<unk>"
|
| 6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/tokenization_internlm2.py
DELETED
|
@@ -1,236 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
| 5 |
-
#
|
| 6 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
-
# you may not use this file except in compliance with the License.
|
| 8 |
-
# You may obtain a copy of the License at
|
| 9 |
-
#
|
| 10 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
-
#
|
| 12 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
-
# See the License for the specific language governing permissions and
|
| 16 |
-
# limitations under the License.
|
| 17 |
-
|
| 18 |
-
"""Tokenization classes for InternLM."""
|
| 19 |
-
import os
|
| 20 |
-
from shutil import copyfile
|
| 21 |
-
from typing import Any, Dict, List, Optional, Tuple
|
| 22 |
-
|
| 23 |
-
import sentencepiece as spm
|
| 24 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 25 |
-
from transformers.utils import logging
|
| 26 |
-
|
| 27 |
-
logger = logging.get_logger(__name__)
|
| 28 |
-
|
| 29 |
-
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
| 30 |
-
|
| 31 |
-
PRETRAINED_VOCAB_FILES_MAP = {}
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
| 35 |
-
class InternLM2Tokenizer(PreTrainedTokenizer):
|
| 36 |
-
"""
|
| 37 |
-
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 38 |
-
|
| 39 |
-
Args:
|
| 40 |
-
vocab_file (`str`):
|
| 41 |
-
Path to the vocabulary file.
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
| 45 |
-
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 46 |
-
model_input_names = ["input_ids", "attention_mask"]
|
| 47 |
-
_auto_class = "AutoTokenizer"
|
| 48 |
-
|
| 49 |
-
def __init__(
|
| 50 |
-
self,
|
| 51 |
-
vocab_file,
|
| 52 |
-
unk_token="<unk>",
|
| 53 |
-
bos_token="<s>",
|
| 54 |
-
eos_token="</s>",
|
| 55 |
-
pad_token="</s>",
|
| 56 |
-
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 57 |
-
add_bos_token=True,
|
| 58 |
-
add_eos_token=False,
|
| 59 |
-
decode_with_prefix_space=False,
|
| 60 |
-
clean_up_tokenization_spaces=False,
|
| 61 |
-
**kwargs,
|
| 62 |
-
):
|
| 63 |
-
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 64 |
-
self.vocab_file = vocab_file
|
| 65 |
-
self.add_bos_token = add_bos_token
|
| 66 |
-
self.add_eos_token = add_eos_token
|
| 67 |
-
self.decode_with_prefix_space = decode_with_prefix_space
|
| 68 |
-
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 69 |
-
self.sp_model.Load(vocab_file)
|
| 70 |
-
self._no_prefix_space_tokens = None
|
| 71 |
-
super().__init__(
|
| 72 |
-
bos_token=bos_token,
|
| 73 |
-
eos_token=eos_token,
|
| 74 |
-
unk_token=unk_token,
|
| 75 |
-
pad_token=pad_token,
|
| 76 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 77 |
-
**kwargs,
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
@property
|
| 81 |
-
def no_prefix_space_tokens(self):
|
| 82 |
-
if self._no_prefix_space_tokens is None:
|
| 83 |
-
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
| 84 |
-
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
| 85 |
-
return self._no_prefix_space_tokens
|
| 86 |
-
|
| 87 |
-
@property
|
| 88 |
-
def vocab_size(self):
|
| 89 |
-
"""Returns vocab size"""
|
| 90 |
-
return self.sp_model.get_piece_size()
|
| 91 |
-
|
| 92 |
-
@property
|
| 93 |
-
def bos_token_id(self) -> Optional[int]:
|
| 94 |
-
return self.sp_model.bos_id()
|
| 95 |
-
|
| 96 |
-
@property
|
| 97 |
-
def eos_token_id(self) -> Optional[int]:
|
| 98 |
-
return self.sp_model.eos_id()
|
| 99 |
-
|
| 100 |
-
def get_vocab(self):
|
| 101 |
-
"""Returns vocab as a dict"""
|
| 102 |
-
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 103 |
-
vocab.update(self.added_tokens_encoder)
|
| 104 |
-
return vocab
|
| 105 |
-
|
| 106 |
-
def _tokenize(self, text):
|
| 107 |
-
"""Returns a tokenized string."""
|
| 108 |
-
return self.sp_model.encode(text, out_type=str)
|
| 109 |
-
|
| 110 |
-
def _convert_token_to_id(self, token):
|
| 111 |
-
"""Converts a token (str) in an id using the vocab."""
|
| 112 |
-
return self.sp_model.piece_to_id(token)
|
| 113 |
-
|
| 114 |
-
def _convert_id_to_token(self, index):
|
| 115 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 116 |
-
token = self.sp_model.IdToPiece(index)
|
| 117 |
-
return token
|
| 118 |
-
|
| 119 |
-
def _maybe_add_prefix_space(self, tokens, decoded):
|
| 120 |
-
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
| 121 |
-
return " " + decoded
|
| 122 |
-
else:
|
| 123 |
-
return decoded
|
| 124 |
-
|
| 125 |
-
def convert_tokens_to_string(self, tokens):
|
| 126 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
| 127 |
-
current_sub_tokens = []
|
| 128 |
-
out_string = ""
|
| 129 |
-
prev_is_special = False
|
| 130 |
-
for token in tokens:
|
| 131 |
-
# make sure that special tokens are not decoded using sentencepiece model
|
| 132 |
-
if token in self.all_special_tokens:
|
| 133 |
-
if not prev_is_special:
|
| 134 |
-
out_string += " "
|
| 135 |
-
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 136 |
-
prev_is_special = True
|
| 137 |
-
current_sub_tokens = []
|
| 138 |
-
else:
|
| 139 |
-
current_sub_tokens.append(token)
|
| 140 |
-
prev_is_special = False
|
| 141 |
-
out_string += self.sp_model.decode(current_sub_tokens)
|
| 142 |
-
out_string = self.clean_up_tokenization(out_string)
|
| 143 |
-
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
| 144 |
-
return out_string[1:]
|
| 145 |
-
|
| 146 |
-
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 147 |
-
"""
|
| 148 |
-
Save the vocabulary and special tokens file to a directory.
|
| 149 |
-
|
| 150 |
-
Args:
|
| 151 |
-
save_directory (`str`):
|
| 152 |
-
The directory in which to save the vocabulary.
|
| 153 |
-
|
| 154 |
-
Returns:
|
| 155 |
-
`Tuple(str)`: Paths to the files saved.
|
| 156 |
-
"""
|
| 157 |
-
if not os.path.isdir(save_directory):
|
| 158 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 159 |
-
return
|
| 160 |
-
out_vocab_file = os.path.join(
|
| 161 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 165 |
-
copyfile(self.vocab_file, out_vocab_file)
|
| 166 |
-
elif not os.path.isfile(self.vocab_file):
|
| 167 |
-
with open(out_vocab_file, "wb") as fi:
|
| 168 |
-
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 169 |
-
fi.write(content_spiece_model)
|
| 170 |
-
|
| 171 |
-
return (out_vocab_file,)
|
| 172 |
-
|
| 173 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 174 |
-
if self.add_bos_token:
|
| 175 |
-
bos_token_ids = [self.bos_token_id]
|
| 176 |
-
else:
|
| 177 |
-
bos_token_ids = []
|
| 178 |
-
|
| 179 |
-
output = bos_token_ids + token_ids_0
|
| 180 |
-
|
| 181 |
-
if token_ids_1 is not None:
|
| 182 |
-
output = output + token_ids_1
|
| 183 |
-
|
| 184 |
-
if self.add_eos_token:
|
| 185 |
-
output = output + [self.eos_token_id]
|
| 186 |
-
|
| 187 |
-
return output
|
| 188 |
-
|
| 189 |
-
def get_special_tokens_mask(
|
| 190 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 191 |
-
) -> List[int]:
|
| 192 |
-
"""
|
| 193 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 194 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
token_ids_0 (`List[int]`):
|
| 198 |
-
List of IDs.
|
| 199 |
-
token_ids_1 (`List[int]`, *optional*):
|
| 200 |
-
Optional second list of IDs for sequence pairs.
|
| 201 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 202 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
| 203 |
-
|
| 204 |
-
Returns:
|
| 205 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 206 |
-
"""
|
| 207 |
-
if already_has_special_tokens:
|
| 208 |
-
return super().get_special_tokens_mask(
|
| 209 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
if token_ids_1 is None:
|
| 213 |
-
return [1] + ([0] * len(token_ids_0)) + [1]
|
| 214 |
-
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
| 215 |
-
|
| 216 |
-
def create_token_type_ids_from_sequences(
|
| 217 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 218 |
-
) -> List[int]:
|
| 219 |
-
"""
|
| 220 |
-
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
| 221 |
-
use of token type ids, therefore a list of zeros is returned.
|
| 222 |
-
|
| 223 |
-
Args:
|
| 224 |
-
token_ids_0 (`List[int]`):
|
| 225 |
-
List of IDs.
|
| 226 |
-
token_ids_1 (`List[int]`, *optional*):
|
| 227 |
-
Optional second list of IDs for sequence pairs.
|
| 228 |
-
|
| 229 |
-
Returns:
|
| 230 |
-
`List[int]`: List of zeros.
|
| 231 |
-
"""
|
| 232 |
-
eos = [self.eos_token_id]
|
| 233 |
-
|
| 234 |
-
if token_ids_1 is None:
|
| 235 |
-
return len(token_ids_0 + eos) * [0]
|
| 236 |
-
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/tokenization_internlm2_fast.py
DELETED
|
@@ -1,214 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
| 5 |
-
#
|
| 6 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
-
# you may not use this file except in compliance with the License.
|
| 8 |
-
# You may obtain a copy of the License at
|
| 9 |
-
#
|
| 10 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
-
#
|
| 12 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
-
# See the License for the specific language governing permissions and
|
| 16 |
-
# limitations under the License.
|
| 17 |
-
|
| 18 |
-
"""Tokenization Fast class for InternLM."""
|
| 19 |
-
import os
|
| 20 |
-
from shutil import copyfile
|
| 21 |
-
from typing import Any, Dict, Optional, Tuple
|
| 22 |
-
|
| 23 |
-
from tokenizers import processors, decoders, Tokenizer, normalizers
|
| 24 |
-
from tokenizers.models import BPE
|
| 25 |
-
|
| 26 |
-
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 27 |
-
from transformers.utils import logging
|
| 28 |
-
|
| 29 |
-
from transformers.convert_slow_tokenizer import (
|
| 30 |
-
SLOW_TO_FAST_CONVERTERS,
|
| 31 |
-
SpmConverter,
|
| 32 |
-
SentencePieceExtractor,
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
from .tokenization_internlm2 import InternLM2Tokenizer
|
| 36 |
-
|
| 37 |
-
logger = logging.get_logger(__name__)
|
| 38 |
-
|
| 39 |
-
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
| 40 |
-
|
| 41 |
-
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
| 42 |
-
class InternLM2Converter(SpmConverter):
|
| 43 |
-
handle_byte_fallback = True
|
| 44 |
-
|
| 45 |
-
def vocab(self, proto):
|
| 46 |
-
vocab = [
|
| 47 |
-
("<unk>", 0.0),
|
| 48 |
-
("<s>", 0.0),
|
| 49 |
-
("</s>", 0.0),
|
| 50 |
-
]
|
| 51 |
-
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
| 52 |
-
return vocab
|
| 53 |
-
|
| 54 |
-
def unk_id(self, proto):
|
| 55 |
-
unk_id = 0
|
| 56 |
-
return unk_id
|
| 57 |
-
|
| 58 |
-
def decoder(self, replacement, add_prefix_space):
|
| 59 |
-
decoders_sequence = [
|
| 60 |
-
decoders.Replace("▁", " "),
|
| 61 |
-
decoders.ByteFallback(),
|
| 62 |
-
decoders.Fuse(),
|
| 63 |
-
]
|
| 64 |
-
if self.proto.normalizer_spec.add_dummy_prefix:
|
| 65 |
-
decoders_sequence.append(decoders.Strip(content=" ", left=1))
|
| 66 |
-
return decoders.Sequence(decoders_sequence)
|
| 67 |
-
|
| 68 |
-
def tokenizer(self, proto):
|
| 69 |
-
model_type = proto.trainer_spec.model_type
|
| 70 |
-
vocab_scores = self.vocab(proto)
|
| 71 |
-
# special tokens
|
| 72 |
-
added_tokens = self.original_tokenizer.added_tokens_decoder
|
| 73 |
-
for i in range(len(vocab_scores)):
|
| 74 |
-
piece, score = vocab_scores[i]
|
| 75 |
-
if i in added_tokens:
|
| 76 |
-
vocab_scores[i] = (added_tokens[i].content, score)
|
| 77 |
-
if model_type == 1:
|
| 78 |
-
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
|
| 79 |
-
|
| 80 |
-
elif model_type == 2:
|
| 81 |
-
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
| 82 |
-
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
| 83 |
-
tokenizer = Tokenizer(
|
| 84 |
-
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
| 85 |
-
)
|
| 86 |
-
tokenizer.add_special_tokens(
|
| 87 |
-
[ added_token for index, added_token in added_tokens.items()]
|
| 88 |
-
)
|
| 89 |
-
else:
|
| 90 |
-
raise Exception(
|
| 91 |
-
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
return tokenizer
|
| 95 |
-
|
| 96 |
-
def normalizer(self, proto):
|
| 97 |
-
normalizers_list = []
|
| 98 |
-
if proto.normalizer_spec.add_dummy_prefix:
|
| 99 |
-
normalizers_list.append(normalizers.Prepend(prepend="▁"))
|
| 100 |
-
normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
|
| 101 |
-
return normalizers.Sequence(normalizers_list)
|
| 102 |
-
|
| 103 |
-
def pre_tokenizer(self, replacement, add_prefix_space):
|
| 104 |
-
return None
|
| 105 |
-
|
| 106 |
-
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
| 110 |
-
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
| 111 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
| 112 |
-
slow_tokenizer_class = InternLM2Tokenizer
|
| 113 |
-
padding_side = "left"
|
| 114 |
-
model_input_names = ["input_ids", "attention_mask"]
|
| 115 |
-
_auto_class = "AutoTokenizer"
|
| 116 |
-
|
| 117 |
-
def __init__(
|
| 118 |
-
self,
|
| 119 |
-
vocab_file,
|
| 120 |
-
unk_token="<unk>",
|
| 121 |
-
bos_token="<s>",
|
| 122 |
-
eos_token="</s>",
|
| 123 |
-
pad_token="</s>",
|
| 124 |
-
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 125 |
-
add_bos_token=True,
|
| 126 |
-
add_eos_token=False,
|
| 127 |
-
decode_with_prefix_space=False,
|
| 128 |
-
clean_up_tokenization_spaces=False,
|
| 129 |
-
**kwargs,
|
| 130 |
-
):
|
| 131 |
-
super().__init__(
|
| 132 |
-
vocab_file=vocab_file,
|
| 133 |
-
unk_token=unk_token,
|
| 134 |
-
bos_token=bos_token,
|
| 135 |
-
eos_token=eos_token,
|
| 136 |
-
pad_token=pad_token,
|
| 137 |
-
sp_model_kwargs=sp_model_kwargs,
|
| 138 |
-
add_bos_token=add_bos_token,
|
| 139 |
-
add_eos_token=add_eos_token,
|
| 140 |
-
decode_with_prefix_space=decode_with_prefix_space,
|
| 141 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 142 |
-
**kwargs,
|
| 143 |
-
)
|
| 144 |
-
self._add_bos_token = add_bos_token
|
| 145 |
-
self._add_eos_token = add_eos_token
|
| 146 |
-
self.update_post_processor()
|
| 147 |
-
self.vocab_file = vocab_file
|
| 148 |
-
|
| 149 |
-
@property
|
| 150 |
-
def can_save_slow_tokenizer(self) -> bool:
|
| 151 |
-
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
| 152 |
-
|
| 153 |
-
def update_post_processor(self):
|
| 154 |
-
"""
|
| 155 |
-
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
| 156 |
-
"""
|
| 157 |
-
bos = self.bos_token
|
| 158 |
-
bos_token_id = self.bos_token_id
|
| 159 |
-
if bos is None and self.add_bos_token:
|
| 160 |
-
raise ValueError("add_bos_token = True but bos_token = None")
|
| 161 |
-
|
| 162 |
-
eos = self.eos_token
|
| 163 |
-
eos_token_id = self.eos_token_id
|
| 164 |
-
if eos is None and self.add_eos_token:
|
| 165 |
-
raise ValueError("add_eos_token = True but eos_token = None")
|
| 166 |
-
|
| 167 |
-
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
| 168 |
-
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
| 169 |
-
|
| 170 |
-
special_tokens = []
|
| 171 |
-
if self.add_bos_token:
|
| 172 |
-
special_tokens.append((bos, bos_token_id))
|
| 173 |
-
if self.add_eos_token:
|
| 174 |
-
special_tokens.append((eos, eos_token_id))
|
| 175 |
-
self._tokenizer.post_processor = processors.TemplateProcessing(
|
| 176 |
-
single=single, pair=pair, special_tokens=special_tokens
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
@property
|
| 180 |
-
def add_eos_token(self):
|
| 181 |
-
return self._add_eos_token
|
| 182 |
-
|
| 183 |
-
@property
|
| 184 |
-
def add_bos_token(self):
|
| 185 |
-
return self._add_bos_token
|
| 186 |
-
|
| 187 |
-
@add_eos_token.setter
|
| 188 |
-
def add_eos_token(self, value):
|
| 189 |
-
self._add_eos_token = value
|
| 190 |
-
self.update_post_processor()
|
| 191 |
-
|
| 192 |
-
@add_bos_token.setter
|
| 193 |
-
def add_bos_token(self, value):
|
| 194 |
-
self._add_bos_token = value
|
| 195 |
-
self.update_post_processor()
|
| 196 |
-
|
| 197 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 198 |
-
if not self.can_save_slow_tokenizer:
|
| 199 |
-
raise ValueError(
|
| 200 |
-
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
| 201 |
-
"tokenizer."
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
if not os.path.isdir(save_directory):
|
| 205 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 206 |
-
return
|
| 207 |
-
out_vocab_file = os.path.join(
|
| 208 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 209 |
-
)
|
| 210 |
-
|
| 211 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
| 212 |
-
copyfile(self.vocab_file, out_vocab_file)
|
| 213 |
-
|
| 214 |
-
return (out_vocab_file,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/tokenizer.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c6fe97617a059964f5afbfb575339f10960465c2f4ae16d8f533d7766092181a
|
| 3 |
-
size 10540271
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/tokenizer.model
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
| 3 |
-
size 1477754
|
|
|
|
|
|
|
|
|
|
|
|
internlm2-7b-cpu-int4-awq/tokenizer_config.json
DELETED
|
@@ -1,40 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"add_bos_token": true,
|
| 3 |
-
"add_eos_token": false,
|
| 4 |
-
"added_tokens_decoder": {
|
| 5 |
-
"0": {
|
| 6 |
-
"content": "<unk>",
|
| 7 |
-
"lstrip": false,
|
| 8 |
-
"normalized": false,
|
| 9 |
-
"rstrip": false,
|
| 10 |
-
"single_word": false,
|
| 11 |
-
"special": true
|
| 12 |
-
},
|
| 13 |
-
"1": {
|
| 14 |
-
"content": "<s>",
|
| 15 |
-
"lstrip": false,
|
| 16 |
-
"normalized": false,
|
| 17 |
-
"rstrip": false,
|
| 18 |
-
"single_word": false,
|
| 19 |
-
"special": true
|
| 20 |
-
},
|
| 21 |
-
"2": {
|
| 22 |
-
"content": "</s>",
|
| 23 |
-
"lstrip": false,
|
| 24 |
-
"normalized": false,
|
| 25 |
-
"rstrip": false,
|
| 26 |
-
"single_word": false,
|
| 27 |
-
"special": true
|
| 28 |
-
}
|
| 29 |
-
},
|
| 30 |
-
"bos_token": "<s>",
|
| 31 |
-
"clean_up_tokenization_spaces": false,
|
| 32 |
-
"decode_with_prefix_space": false,
|
| 33 |
-
"eos_token": "</s>",
|
| 34 |
-
"extra_special_tokens": {},
|
| 35 |
-
"model_max_length": 1000000000000000019884624838656,
|
| 36 |
-
"pad_token": "</s>",
|
| 37 |
-
"sp_model_kwargs": null,
|
| 38 |
-
"tokenizer_class": "LlamaTokenizer",
|
| 39 |
-
"unk_token": "<unk>"
|
| 40 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|