""" """ from typing import Any from typing import Callable from typing import ParamSpec import os import spaces import torch from torch.utils._pytree import tree_map_only from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from torchao.quantization import Int8WeightOnlyConfig from huggingface_hub import hf_hub_download from optimization_utils import capture_component_call from optimization_utils import aoti_compile from optimization_utils import drain_module_parameters from optimization_utils import ZeroGPUCompiledModelFromDict # NEW P = ParamSpec('P') # Expose compiled models so app.py can offer them for download COMPILED_TRANSFORMER_1 = None COMPILED_TRANSFORMER_2 = None LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81) LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52) LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52) TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': { 2: LATENT_FRAMES_DIM, 3: 2 * LATENT_PATCHED_HEIGHT_DIM, 4: 2 * LATENT_PATCHED_WIDTH_DIM, }, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def load_compiled_transformers_from_hub( repo_id: str, filename_1: str = "compiled_transformer_1.pt", filename_2: str = "compiled_transformer_2.pt", device: str = "cuda", ): """ Loads the payload dicts (created via ZeroGPUCompiledModel.to_serializable_dict() and torch.save) and rebuilds callable models that will move constants to CUDA on first call. """ path_1 = hf_hub_download(repo_id=repo_id, filename=filename_1) path_2 = hf_hub_download(repo_id=repo_id, filename=filename_2) payload_1 = torch.load(path_1, map_location="cpu", weights_only=False) payload_2 = torch.load(path_2, map_location="cpu", weights_only=False) if not isinstance(payload_1, dict) or not isinstance(payload_2, dict): raise TypeError("Precompiled files are not payload dicts. Please re-export them with to_serializable_dict().") compiled_1 = ZeroGPUCompiledModelFromDict(payload_1, device=device) compiled_2 = ZeroGPUCompiledModelFromDict(payload_2, device=device) return compiled_1, compiled_2 def _strtobool(v: str | None, default: bool = True) -> bool: if v is None: return default return v.strip().lower() in ("1", "true", "yes", "y", "on") def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): global COMPILED_TRANSFORMER_1, COMPILED_TRANSFORMER_2 @spaces.GPU(duration=1500) def compile_transformer(): pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v", ) kwargs_lora = {"load_into_transformer_2": True} pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v_2", **kwargs_lora, ) pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1.0, 1.0]) pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.0, components=["transformer"]) pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.0, components=["transformer_2"]) pipeline.unload_lora_weights() with capture_component_call(pipeline, "transformer") as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig()) exported_1 = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) exported_2 = torch.export.export( mod=pipeline.transformer_2, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS) compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS) return compiled_1, compiled_2 # Quantize text encoder quantize_(pipeline.text_encoder, Int8WeightOnlyConfig()) use_precompiled = False precompiled_repo = os.getenv("WAN_PRECOMPILED_REPO", "Fabrice-TIERCELIN/Wan_2.2_compiled") if use_precompiled: try: compiled_transformer_1, compiled_transformer_2 = load_compiled_transformers_from_hub( repo_id=precompiled_repo, device="cuda", ) except Exception as e: # fallback if payload format is wrong / outdated print(f"[WARN] Failed to load precompiled artifacts ({e}). Falling back to GPU compilation.") compiled_transformer_1, compiled_transformer_2 = compile_transformer() else: compiled_transformer_1, compiled_transformer_2 = compile_transformer() # expose for downloads COMPILED_TRANSFORMER_1 = compiled_transformer_1 COMPILED_TRANSFORMER_2 = compiled_transformer_2 pipeline.transformer.forward = compiled_transformer_1 drain_module_parameters(pipeline.transformer) pipeline.transformer_2.forward = compiled_transformer_2 drain_module_parameters(pipeline.transformer_2)