RE-TRAC / app.py
JialiangZhu's picture
fix json display
81840a0
import os
import yaml
import asyncio
import inspect
import json
import time
from typing import Any, Dict, AsyncIterator, List, Tuple, Optional
import gradio as gr
from dotenv import load_dotenv
from retrac.graph import build_graph
# -----------------------------
# Your existing logic (kept)
# -----------------------------
def load_config(config_path: str) -> dict:
with open(config_path, "r", encoding="utf-8") as f:
return yaml.safe_load(f)
async def stream_graph_execution(
graph,
initial_state: Dict[str, Any],
) -> AsyncIterator[Dict[str, Any]]:
compiled_graph = graph.compile()
recursion_limit = int(os.getenv("RECURSION_LIMIT", "10000"))
run_config = {"recursion_limit": recursion_limit}
state = initial_state.copy()
async for event in compiled_graph.astream(state, config=run_config):
yield event
# same as your code: merge node outputs into state
for node_name, node_output in event.items():
if node_output is not None:
state.update(node_output)
async def run_streaming(config_path: str, question: str) -> AsyncIterator[Dict[str, Any]]:
cfg = load_config(config_path)
graph = build_graph(cfg)
initial_state = {"question": question}
async for event in stream_graph_execution(graph, initial_state):
yield event
# -----------------------------
# Message serialization helpers
# -----------------------------
def _safe_str(x: Any) -> str:
try:
return str(x)
except Exception:
return repr(x)
def _strip_think_tags(text: str) -> str:
if not text:
return text
return (
text.replace("<think>", "")
.replace("</think>", "")
.replace("<think/>", "")
.strip()
)
def _try_parse_json(value: Any) -> Any:
if isinstance(value, (dict, list)):
return value
if isinstance(value, str):
try:
return json.loads(value)
except Exception:
return value
return value
def _format_json_block(value: Any) -> str:
parsed = _try_parse_json(value)
if isinstance(parsed, (dict, list)):
body = json.dumps(parsed, ensure_ascii=False, indent=2)
else:
body = _safe_str(parsed)
return f"```json\n{body}\n```"
def _debug_log(message: str, data: Dict[str, Any], hypothesis_id: str, run_id: str = "pre-fix") -> None:
# #region agent log
try:
payload = {
"id": f"log_{int(time.time() * 1000)}_{os.getpid()}",
"timestamp": int(time.time() * 1000),
"location": "RE-TRAC/app.py",
"message": message,
"data": data,
"sessionId": "debug-session",
"runId": run_id,
"hypothesisId": hypothesis_id,
}
with open("/home/azureuser/jialiang/repo/tz-dr/.cursor/debug.log", "a", encoding="utf-8") as f:
f.write(json.dumps(payload, ensure_ascii=True) + "\n")
except Exception:
pass
# #endregion
CHATBOT_EXPECTS_MESSAGES: Optional[bool] = None
CHATBOT_SUPPORTS_GROUPING: Optional[bool] = None
def _gradio_version_major() -> Optional[int]:
version = getattr(gr, "__version__", None)
if not version:
return None
try:
return int(str(version).split(".")[0])
except Exception:
return None
def _message_fingerprint(msg: Any) -> str:
role, content = _extract_role_and_content(msg)
return f"{role}::{content}"
def _is_tool_message(msg: Any) -> bool:
if isinstance(msg, dict):
return (msg.get("role") == "tool") or (msg.get("type") == "tool")
return getattr(msg, "type", None) == "tool"
def _extract_role_and_content(msg: Any) -> Tuple[str, str]:
"""
Convert various message types into (role, content) for display.
Supports:
- LangChain BaseMessage-like objects (has .type/.content)
- dict messages {"role": "...", "content": "..."} or similar
"""
# dict-like
if isinstance(msg, dict):
role = msg.get("role") or msg.get("type") or "unknown"
content = msg.get("content")
if content is None:
# fallback: show whole dict
content = _safe_str(msg)
return str(role), _safe_str(content)
# BaseMessage-like
mtype = getattr(msg, "type", None)
content = getattr(msg, "content", None)
# ToolMessage often has name/tool_call_id, show them if present
if mtype == "tool":
return "tool", _safe_str(content)
if mtype == "human":
return "user", _safe_str(content)
if mtype == "ai":
return "assistant", _safe_str(content)
if mtype == "system":
return "system", _safe_str(content)
# unknown object: try best
if content is not None and mtype is not None:
return _safe_str(mtype), _safe_str(content)
return "unknown", _safe_str(msg)
def _extract_tool_calls(msg: Any) -> List[Dict[str, Any]]:
if isinstance(msg, dict):
tool_calls = msg.get("tool_calls") or msg.get("tool_calls", [])
if isinstance(tool_calls, list):
return tool_calls
return []
tool_calls = getattr(msg, "tool_calls", None)
if isinstance(tool_calls, list):
return tool_calls
return []
def _split_ai_think(content: str) -> List[str]:
if not content:
return []
if "</think>" not in content and "<think/>" not in content and "<think>" not in content:
return [content]
if "<think/>" in content and "</think>" not in content:
after = _strip_think_tags(content.replace("<think/>", "", 1))
return [after] if after else []
if "<think>" in content and "</think>" not in content:
cleaned = _strip_think_tags(content)
return [cleaned] if cleaned else []
before, after = content.split("</think>", 1)
before = _strip_think_tags(before)
after = _strip_think_tags(after.lstrip())
parts = []
if before:
parts.append(before)
if after:
parts.append(after)
return parts
def _tool_call_to_text(tool_call: Any) -> str:
if isinstance(tool_call, dict):
name = tool_call.get("name") or tool_call.get("tool") or "tool_call"
args = tool_call.get("args") or tool_call.get("arguments") or {}
else:
name = getattr(tool_call, "name", None) or getattr(tool_call, "tool", None) or "tool_call"
args = getattr(tool_call, "args", None) or getattr(tool_call, "arguments", None) or {}
return f"**Tool Call** ({name})\n{_format_json_block(args)}"
def _explode_message(msg: Any, is_nonfirst_human: bool) -> List[Tuple[str, str, str]]:
role, content = _extract_role_and_content(msg)
parts: List[Tuple[str, str, str]] = []
render_role = "assistant" if role == "user" else role
_debug_log(
"explode_message entry",
{
"role": role,
"render_role": render_role,
"has_think": ("<think" in content) or ("</think>" in content),
"content_preview": _safe_str(content)[:200],
},
"H8",
)
if _is_tool_message(msg):
tool_body = _format_json_block(content)
return [(render_role, f"**Tool**\n{tool_body}", "tool")]
if role in ("assistant", "user"):
split_parts = _split_ai_think(content)
_debug_log(
"explode_message split",
{
"role": role,
"split_count": len(split_parts),
"split_previews": [p[:120] for p in split_parts],
},
"H8",
)
has_think = ("</think>" in content) or ("<think/>" in content) or ("<think>" in content)
for idx, part in enumerate(split_parts):
if has_think:
label = "**Model Reasoning**" if idx == 0 and "</think>" in content else "**Model Output**"
body = f"{label}\n{_strip_think_tags(part)}"
else:
body = _strip_think_tags(part)
if role == "user" and is_nonfirst_human:
body = f"{body}"
parts.append((render_role, body, role))
for tool_call in _extract_tool_calls(msg):
parts.append((render_role, _tool_call_to_text(tool_call), "tool_call"))
return parts or [(render_role, content, role)]
return [(role, content, "assistant" if role in ("assistant", "system") else "user")]
def _explode_messages(messages: List[Any]) -> List[Tuple[str, str, str]]:
exploded: List[Tuple[str, str, str]] = []
human_count = 0
for msg in messages:
role, _ = _extract_role_and_content(msg)
if role == "user":
human_count += 1
is_nonfirst_human = human_count > 1
else:
is_nonfirst_human = False
exploded.extend(_explode_message(msg, is_nonfirst_human))
return exploded
def serialize_messages_for_gradio(messages: List[Any]) -> List[Dict[str, str]]:
"""
Gradio Chatbot(type="messages") expects:
[{"role": "user"/"assistant"/"system", "content": "..."}, ...]
Tool messages are mapped into role="assistant" with a prefix.
"""
out: List[Dict[str, str]] = []
for role, content, kind in _explode_messages(messages):
is_tool = kind in ("tool_call", "tool")
# normalize role into gradio-friendly roles
if role not in ("user", "assistant", "system"):
# put everything else as assistant, but keep a prefix
content = f"{content}"
role = "assistant"
out.append({"role": role, "content": content})
return out
def _chatbot_supports_messages() -> bool:
try:
params = list(inspect.signature(gr.Chatbot).parameters.keys())
supports = "type" in params
grouping = "group_consecutive_messages" in params
major = _gradio_version_major()
_debug_log(
"chatbot signature check",
{
"supports_messages": supports,
"supports_grouping": grouping,
"params": params,
"gradio_version": getattr(gr, "__version__", None),
"gradio_major": major,
},
"H1",
)
global CHATBOT_SUPPORTS_GROUPING
CHATBOT_SUPPORTS_GROUPING = grouping
return supports
except Exception:
_debug_log(
"chatbot signature check failed",
{"supports_messages": False},
"H1",
)
return False
def _should_use_messages_format() -> bool:
major = _gradio_version_major()
if major is not None and major >= 6:
_debug_log(
"format decision",
{"reason": "gradio_major>=6", "gradio_major": major},
"H1",
)
return True
if CHATBOT_SUPPORTS_MESSAGES:
_debug_log(
"format decision",
{"reason": "chatbot_supports_type", "gradio_major": major},
"H1",
)
return True
_debug_log(
"format decision",
{"reason": "legacy_tuple", "gradio_major": major},
"H1",
)
return False
CHATBOT_SUPPORTS_MESSAGES = _chatbot_supports_messages()
def serialize_messages_for_legacy_chatbot(
messages: List[Any],
) -> List[Tuple[Optional[str], Optional[str]]]:
"""
Legacy gr.Chatbot expects list of (user, bot) tuples.
We map non-user roles onto the bot side with a role prefix.
"""
rendered: List[Tuple[Optional[str], Optional[str]]] = []
for role, content, kind in _explode_messages(messages):
is_tool = kind in ("tool_call", "tool")
if role == "user":
rendered.append((None, f"**RE-TRAC: REcursive TRAjectory Compression**\n{content}"))
continue
if role != "assistant":
content = f"{content}"
if is_tool:
rendered.append((None, content))
else:
if rendered and rendered[-1][1] is None:
rendered[-1] = (rendered[-1][0], content)
else:
rendered.append((None, content))
return rendered
def serialize_messages_for_chatbot(messages: List[Any]) -> List[Any]:
_debug_log(
"serialize_messages_for_chatbot",
{
"supports_messages": CHATBOT_SUPPORTS_MESSAGES,
"expects_messages": CHATBOT_EXPECTS_MESSAGES,
"count": len(messages),
},
"H2",
)
if CHATBOT_EXPECTS_MESSAGES:
return serialize_messages_for_gradio(messages)
return serialize_messages_for_legacy_chatbot(messages)
def append_messages_for_chatbot(
rendered: List[Any],
tail_messages: List[Any],
) -> List[Any]:
_debug_log(
"append_messages_for_chatbot",
{
"supports_messages": CHATBOT_SUPPORTS_MESSAGES,
"expects_messages": CHATBOT_EXPECTS_MESSAGES,
"rendered_len": len(rendered),
"tail_len": len(tail_messages),
},
"H3",
)
if CHATBOT_EXPECTS_MESSAGES:
rendered.extend(serialize_messages_for_gradio(tail_messages))
return rendered
tail_rendered = serialize_messages_for_legacy_chatbot(tail_messages)
if not tail_rendered:
return rendered
if not rendered:
return tail_rendered
first = tail_rendered[0]
if rendered[-1][1] is None and first[0] is None and first[1] is not None:
rendered[-1] = (rendered[-1][0], first[1])
tail_rendered = tail_rendered[1:]
rendered.extend(tail_rendered)
return rendered
def fingerprint_messages(messages: List[Any]) -> List[str]:
"""
Create a stable-ish fingerprint list for prefix checks.
We avoid id() because objects may be recreated.
"""
fp: List[str] = []
for m in messages:
role, content = _extract_role_and_content(m)
fp.append(f"{role}::{content}")
return fp
def compute_render_strategy(
prev_fp: List[str],
new_fp: List[str],
) -> Tuple[str, int]:
"""
Decide whether we can append incrementally or must rebuild.
Returns:
("append", start_index) if prev is a prefix of new
("rebuild", 0) otherwise
"""
if not prev_fp:
return ("rebuild", 0)
if len(new_fp) >= len(prev_fp) and new_fp[: len(prev_fp)] == prev_fp:
return ("append", len(prev_fp))
return ("rebuild", 0)
# -----------------------------
# Gradio app
# -----------------------------
CONFIG_PATH = os.getenv("RETRAC_CONFIG", "retrac/30B.yaml")
async def run_once(query: str, ui_state: Optional[Dict[str, Any]]):
"""
Single-run streaming handler.
ui_state stores:
- "prev_fp": fingerprint list for diffing
- "rendered": messages already rendered (as gradio 'messages' format)
- "merged_state": current merged graph state (dict)
- "done": bool
"""
if ui_state is None:
ui_state = {}
_debug_log(
"run_once entry",
{
"query": _safe_str(query),
"done": bool(ui_state.get("done")),
"supports_messages": CHATBOT_SUPPORTS_MESSAGES,
"expects_messages": CHATBOT_EXPECTS_MESSAGES,
},
"H4",
)
# Enforce one-time input per run.
if ui_state.get("done"):
# already finished; no second run without reset
yield (
ui_state.get("rendered", []),
ui_state,
gr.update(interactive=False),
gr.update(interactive=False),
"Already finished. Click Reset to run again.",
)
return
merged_state: Dict[str, Any] = ui_state.get("merged_state", {})
prev_fp: List[str] = ui_state.get("prev_fp", [])
seen_fp: List[str] = ui_state.get("seen_fp", [])
all_messages: List[Any] = ui_state.get("all_messages", [])
rendered: List[Dict[str, str]] = ui_state.get("rendered", [])
# disable input immediately after submit
yield (
rendered,
ui_state,
gr.update(interactive=False),
gr.update(interactive=False),
"Running...",
)
try:
async for event in run_streaming(CONFIG_PATH, query):
# merge node outputs into merged_state (same logic as your runner)
for _, node_output in event.items():
if node_output is not None:
merged_state.update(node_output)
# pick the full message list from merged_state
full_messages = merged_state.get("messages", [])
# accumulate messages; never clear already displayed ones
new_messages: List[Any] = []
for m in full_messages:
fp = _message_fingerprint(m)
if fp not in seen_fp:
seen_fp.append(fp)
all_messages.append(m)
new_messages.append(m)
if not rendered:
rendered = serialize_messages_for_chatbot(all_messages)
elif new_messages:
rendered = append_messages_for_chatbot(rendered, new_messages)
new_fp = fingerprint_messages(full_messages)
_debug_log(
"rendered update",
{
"mode": "accumulate",
"rendered_len": len(rendered),
"rendered_item_type": type(rendered[0]).__name__ if rendered else None,
"all_messages_len": len(all_messages),
"new_messages_len": len(new_messages),
},
"H5",
)
prev_fp = new_fp
# update ui_state
ui_state["merged_state"] = merged_state
ui_state["prev_fp"] = prev_fp
ui_state["seen_fp"] = seen_fp
ui_state["all_messages"] = all_messages
ui_state["rendered"] = rendered
# show some lightweight status
status = "Running..."
if "final" in event:
status = "Finished."
ui_state["done"] = True
yield (
rendered,
ui_state,
gr.update(interactive=False),
gr.update(interactive=False),
status,
)
if "final" in event:
break
except Exception as e:
ui_state["done"] = True
yield (
rendered,
ui_state,
gr.update(interactive=False),
gr.update(interactive=False),
f"Error: {_safe_str(e)}",
)
def reset():
# re-enable input
return [], None, gr.update(interactive=True, value=""), gr.update(interactive=True), "Idle."
with gr.Blocks() as demo:
gr.Markdown("## RE-TRAC (REcursive TRAjectory Compression) 30B Demo")
with gr.Row():
with gr.Column(scale=6):
gr.Markdown(f"Config: `{CONFIG_PATH}`")
chatbot_kwargs = {"height": 520, "label": "Messages (full stream)"}
if CHATBOT_SUPPORTS_GROUPING:
chatbot_kwargs["group_consecutive_messages"] = False
if CHATBOT_SUPPORTS_MESSAGES:
chatbot = gr.Chatbot(type="messages", **chatbot_kwargs)
else:
chatbot = gr.Chatbot(**chatbot_kwargs)
# #region agent log
try:
attr_type = getattr(chatbot, "type", None)
attr_format = getattr(chatbot, "format", None)
attr_data_format = getattr(chatbot, "data_format", None)
CHATBOT_EXPECTS_MESSAGES = _should_use_messages_format() or (
(attr_type == "messages") or (attr_format == "messages") or (attr_data_format == "messages")
)
_debug_log(
"chatbot instance attrs",
{
"attr_type": attr_type,
"attr_format": attr_format,
"attr_data_format": attr_data_format,
"expects_messages": CHATBOT_EXPECTS_MESSAGES,
},
"H1",
)
except Exception:
pass
# #endregion
status = gr.Markdown("Idle.")
ui_state = gr.State(None)
query = gr.Textbox(label="Query (only once)", placeholder="Enter your query and press Run")
run_btn = gr.Button("Run", variant="primary")
reset_btn = gr.Button("Reset")
with gr.Column(scale=4):
gr.Markdown(
"""
## Introduction
We introduce Re-TRAC, a recursive framework that resolves the inefficiency of isolated trials in agentic search. It not only boosts both commercial and open-source models by 15–20% over ReAct on BrowseComp but also drives SFT-only performance to new heights (30% for 4B, 53% for 30B).
</div>
<p align="center">
πŸ€— <a href="https://github.com/microsoft/InfoAgent/tree/main/retrac">HuggingFace(comming soon)</a> |
πŸ’» <a href="https://github.com/microsoft/InfoAgent/tree/main/retrac">GitHub</a> |
πŸ“‘ <a href="https://arxiv.org/abs/2602.02486">Paper</a> |
🌐 <a href="https://huggingface.co/spaces/JialiangZhu/RE-TRAC">Demo</a>
</p>
## Method Overview
"""
)
gr.Image(
value="image/method.png",
label="Method Overview",
show_label=False,
)
gr.Markdown("## Main Result")
gr.Image(
value="image/main_table.png",
label="Main Result",
show_label=False,
)
run_btn.click(
run_once,
inputs=[query, ui_state],
outputs=[chatbot, ui_state, query, run_btn, status],
)
# Also allow pressing Enter (still single-run because we disable immediately)
query.submit(
run_once,
inputs=[query, ui_state],
outputs=[chatbot, ui_state, query, run_btn, status],
)
reset_btn.click(
reset,
outputs=[chatbot, ui_state, query, run_btn, status],
)
demo.queue() # required for async streaming + multiple yields
demo.launch()