|
|
import gradio as gr |
|
|
|
|
|
import os |
|
|
import re |
|
|
import subprocess |
|
|
import tempfile |
|
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
MODEL_ID = "ejschwartz/oo-method-test-model-bylibrary" |
|
|
|
|
|
classifier = pipeline( |
|
|
"text-classification", |
|
|
model=MODEL_ID, |
|
|
) |
|
|
|
|
|
def run_model(text): |
|
|
results = classifier(text, top_k=None, truncation=True) |
|
|
if isinstance(results, dict): |
|
|
results = [results] |
|
|
if results and isinstance(results[0], list): |
|
|
results = results[0] |
|
|
|
|
|
confidences = [ |
|
|
{"label": entry["label"], "confidence": entry["score"]} |
|
|
for entry in results |
|
|
] |
|
|
best_label = max(confidences, key=lambda entry: entry["confidence"])["label"] if confidences else "unknown" |
|
|
return {"label": best_label, "confidences": confidences} |
|
|
|
|
|
def get_all_dis(bname, addrs=None): |
|
|
|
|
|
anafile = tempfile.NamedTemporaryFile(prefix=os.path.basename(bname) + "_", suffix=".bat_ana") |
|
|
ananame = anafile.name |
|
|
|
|
|
addrstr = "" |
|
|
if addrs is not None: |
|
|
addrstr = " ".join([f"--function-at {x}" for x in addrs]) |
|
|
|
|
|
subprocess.check_output(f"bat-ana {addrstr} --no-post-analysis -o {ananame} {bname} 2>/dev/null", shell=True) |
|
|
|
|
|
|
|
|
output = subprocess.check_output(f"bat-dis --no-insn-address --no-bb-cfg-arrows --color=off {ananame} 2>/dev/null", shell=True) |
|
|
output = re.sub(b' +', b' ', output) |
|
|
|
|
|
func_dis = {} |
|
|
last_func = None |
|
|
current_output = [] |
|
|
|
|
|
for l in output.splitlines(): |
|
|
if l.startswith(b";;; function 0x"): |
|
|
if last_func is not None: |
|
|
func_dis[last_func] = b"\n".join(current_output) |
|
|
last_func = int(l.split()[2], 16) |
|
|
current_output.clear() |
|
|
|
|
|
if not b";;" in l: |
|
|
current_output.append(l) |
|
|
|
|
|
if last_func is not None: |
|
|
if last_func in func_dis: |
|
|
print("Warning: Ignoring multiple functions at the same address") |
|
|
else: |
|
|
func_dis[last_func] = b"\n".join(current_output) |
|
|
|
|
|
return func_dis |
|
|
|
|
|
def get_funs(f): |
|
|
funs = get_all_dis(f.name) |
|
|
return "\n".join(("%#x" % addr) for addr in funs.keys()) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
|
|
all_dis_state = gr.State() |
|
|
|
|
|
gr.Markdown( |
|
|
""" |
|
|
# Function/Method Detector |
|
|
|
|
|
First, upload a binary. |
|
|
|
|
|
This model was only trained on 32-bit MSVC++ binaries. You can provide |
|
|
other types of binaries, but the result will probably be gibberish. |
|
|
""" |
|
|
) |
|
|
|
|
|
file_widget = gr.File(label="Binary file") |
|
|
|
|
|
with gr.Column(visible=False) as col: |
|
|
|
|
|
|
|
|
gr.Markdown(""" |
|
|
Great, you selected an executable! Now pick the function you would like to analyze. |
|
|
""") |
|
|
|
|
|
fun_dropdown = gr.Dropdown(label="Select a function", choices=["Woohoo!"], interactive=True) |
|
|
|
|
|
gr.Markdown(""" |
|
|
Below you can find the selected function's disassembly, and the model's |
|
|
prediction of whether the function is an object-oriented method or a |
|
|
regular function. |
|
|
""") |
|
|
|
|
|
with gr.Row(visible=True) as result: |
|
|
disassembly = gr.Textbox(label="Disassembly", lines=20) |
|
|
with gr.Column(): |
|
|
clazz = gr.Label() |
|
|
|
|
|
example_widget = gr.Examples( |
|
|
examples=[f.path for f in os.scandir(os.path.join(os.path.dirname(__file__), "examples"))], |
|
|
inputs=file_widget, |
|
|
outputs=[all_dis_state, disassembly, clazz] |
|
|
) |
|
|
|
|
|
def file_change_fn(file, progress=gr.Progress()): |
|
|
|
|
|
if file is None: |
|
|
return {col: gr.update(visible=False), |
|
|
all_dis_state: None} |
|
|
else: |
|
|
|
|
|
|
|
|
progress(0, desc="Disassembling executable") |
|
|
fun_data = get_all_dis(file.name) |
|
|
|
|
|
addrs = ["%#x" % addr for addr in fun_data.keys()] |
|
|
default_addr = addrs[0] if addrs else None |
|
|
|
|
|
return {col: gr.update(visible=True), |
|
|
fun_dropdown: gr.update(choices=addrs, value=default_addr), |
|
|
all_dis_state: fun_data |
|
|
} |
|
|
|
|
|
def function_change_fn(selected_fun, fun_data): |
|
|
|
|
|
disassembly_str = fun_data[int(selected_fun, 16)].decode("utf-8") |
|
|
|
|
|
load_results = run_model(disassembly_str) |
|
|
top_k = {e['label']: e['confidence'] for e in load_results['confidences']} |
|
|
|
|
|
return {disassembly: gr.update(value=disassembly_str), |
|
|
clazz: gr.update(value=top_k), |
|
|
} |
|
|
|
|
|
file_widget.change(file_change_fn, file_widget, [col, fun_dropdown, all_dis_state]) |
|
|
|
|
|
fun_dropdown.change(function_change_fn, [fun_dropdown, all_dis_state], [disassembly, clazz]) |
|
|
|
|
|
demo.queue() |
|
|
demo.launch( |
|
|
server_name="0.0.0.0", |
|
|
server_port=7860, |
|
|
|
|
|
debug=True, |
|
|
show_error=True, |
|
|
) |
|
|
|