File size: 7,946 Bytes
463fc7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
"""
Generate training datasets for ALL frameworks automatically.
This script auto-discovers all chunk files and processes them,
generating separate datasets for each framework PLUS a combined dataset.
Usage:
python scripts/generate_all_frameworks.py
Output Structure:
data/processed/training_crewai/
- positive_pairs.json
- triplets.json
data/processed/training_langgraph/
- positive_pairs.json
- triplets.json
data/processed/training_combined/
- positive_pairs.json (ALL frameworks merged)
- triplets.json (ALL frameworks merged)
"""
import sys
import json
from pathlib import Path
from typing import List, Tuple
from dataclasses import asdict
# Add project root to path
PROJECT_ROOT = Path(__file__).parent.parent
sys.path.insert(0, str(PROJECT_ROOT))
from src.task_3_data_engineering.export.pairs_triplets_generator import (
generate_pairs_and_triplets,
PositivePair,
Triplet
)
def discover_all_chunk_files() -> List[Tuple[Path, str]]:
"""
Discover all chunk files in the workspace.
Returns:
List of (chunk_path, framework_name) tuples
"""
chunk_files = []
# Check local chunks
local_paths = [
PROJECT_ROOT / "data" / "processed" / "chunks" / "Local_saved_files" / "chunks.jsonl",
PROJECT_ROOT / "data" / "processed" / "chunks" / "sample_code" / "chunks.jsonl",
]
for path in local_paths:
if path.exists():
# Extract framework from parent directory or use "local"
if "Local_saved_files" in str(path):
framework = "crewai"
elif "sample_code" in str(path):
framework = "sample"
else:
framework = path.parent.name
chunk_files.append((path, framework))
# Check repository chunks
repos_dir = PROJECT_ROOT / "data" / "processed" / "repos"
if repos_dir.exists():
for repo_dir in repos_dir.iterdir():
if repo_dir.is_dir():
for jsonl_file in repo_dir.glob("*_chunks.jsonl"):
# Extract framework from filename or directory
framework = jsonl_file.stem.replace("_chunks", "").split("_")[0]
chunk_files.append((jsonl_file, framework))
return chunk_files
def merge_datasets(all_pairs: List[List[PositivePair]],
all_triplets: List[List[Triplet]],
output_dir: Path) -> None:
"""Merge all framework datasets into combined files (JSON + JSONL)."""
output_dir.mkdir(parents=True, exist_ok=True)
# Flatten lists
combined_pairs = []
for pairs in all_pairs:
combined_pairs.extend(pairs)
combined_triplets = []
for triplets in all_triplets:
combined_triplets.extend(triplets)
# Export combined positive pairs - JSON
pairs_json_path = output_dir / "positive_pairs.json"
with open(pairs_json_path, "w", encoding="utf-8") as f:
json.dump([asdict(p) for p in combined_pairs], f, indent=2, ensure_ascii=False)
print(f"β
Combined positive pairs (JSON): {pairs_json_path}")
# Export combined positive pairs - JSONL
pairs_jsonl_path = output_dir / "positive_pairs.jsonl"
with open(pairs_jsonl_path, "w", encoding="utf-8") as f:
for p in combined_pairs:
f.write(json.dumps(asdict(p), ensure_ascii=False) + "\n")
print(f"β
Combined positive pairs (JSONL): {pairs_jsonl_path}")
# Export combined triplets - JSON
triplets_json_path = output_dir / "triplets.json"
with open(triplets_json_path, "w", encoding="utf-8") as f:
json.dump([asdict(t) for t in combined_triplets], f, indent=2, ensure_ascii=False)
print(f"β
Combined triplets (JSON): {triplets_json_path}")
# Export combined triplets - JSONL
triplets_jsonl_path = output_dir / "triplets.jsonl"
with open(triplets_jsonl_path, "w", encoding="utf-8") as f:
for t in combined_triplets:
f.write(json.dumps(asdict(t), ensure_ascii=False) + "\n")
print(f"β
Combined triplets (JSONL): {triplets_jsonl_path}")
return len(combined_pairs), len(combined_triplets)
def main():
"""Generate datasets for all discovered frameworks + combined dataset."""
print("=" * 80)
print("π MULTI-FRAMEWORK TRAINING DATA GENERATOR")
print("=" * 80)
# Discover all chunk files
print("\nπ Discovering chunk files...")
chunk_files = discover_all_chunk_files()
if not chunk_files:
print("β No chunk files found!")
print("\nPlease ensure chunks exist in:")
print(" - data/processed/chunks/Local_saved_files/")
print(" - data/processed/repos/*/")
return
print(f"β
Found {len(chunk_files)} chunk file(s):\n")
for path, framework in chunk_files:
print(f" π¦ {framework}: {path.name}")
# Process each framework
print("\n" + "=" * 80)
print("π PROCESSING INDIVIDUAL FRAMEWORKS")
print("=" * 80 + "\n")
results = []
all_pairs = []
all_triplets = []
for i, (chunks_path, framework) in enumerate(chunk_files, 1):
print(f"\n[{i}/{len(chunk_files)}] Processing {framework.upper()}...")
print("-" * 60)
output_dir = PROJECT_ROOT / "data" / "processed" / f"training_{framework}"
try:
pairs, triplets = generate_pairs_and_triplets(
chunks_path=chunks_path,
output_dir=output_dir,
num_pairs=100,
num_triplets=100,
variance=5,
export_format="both" # JSON + JSONL
)
# Collect for combined dataset
all_pairs.append(pairs)
all_triplets.append(triplets)
results.append({
"framework": framework,
"status": "β
SUCCESS",
"pairs": len(pairs),
"variations": sum(len(p.variations) for p in pairs),
"triplets": len(triplets),
"output": output_dir
})
except Exception as e:
results.append({
"framework": framework,
"status": f"β FAILED: {str(e)}",
"output": output_dir
})
# Create combined dataset
print("\n" + "=" * 80)
print("π CREATING COMBINED DATASET (ALL FRAMEWORKS)")
print("=" * 80 + "\n")
combined_dir = PROJECT_ROOT / "data" / "processed" / "training_combined"
total_pairs, total_triplets = merge_datasets(all_pairs, all_triplets, combined_dir)
# Final summary
print("\n" + "=" * 80)
print("π FINAL SUMMARY")
print("=" * 80 + "\n")
print("INDIVIDUAL FRAMEWORK DATASETS:")
print("-" * 40)
for result in results:
print(f"\nπ¦ {result['framework'].upper()}")
print(f" Status: {result['status']}")
if "pairs" in result:
print(f" - positive_pairs.json: {result['pairs']} docs ({result['variations']} variations)")
print(f" - triplets.json: {result['triplets']} docs")
print(f" π {result['output']}")
print("\n\nCOMBINED DATASET (ALL FRAMEWORKS):")
print("-" * 40)
print(f"π {combined_dir}")
print(f" - positive_pairs.json: {total_pairs} docs")
print(f" - triplets.json: {total_triplets} docs")
# File count summary
successful = sum(1 for r in results if "SUCCESS" in r["status"])
total_files = (successful * 4) + 4 # 4 per framework + 4 combined
print(f"\n\nπ TOTAL FILES GENERATED: {total_files}")
print(f" - {successful} frameworks Γ 4 files = {successful * 4} files")
print(f" - Combined dataset = 4 files")
print("=" * 80)
if __name__ == "__main__":
main()
|