import torch import torch.nn as nn from transformers import AutoModel, AutoConfig class CodeEmbedder(nn.Module): """ A wrapper around a Transformer model (default: CodeBERT) to produce dense vector embeddings for code snippets using Mean Pooling. """ def __init__(self, model_name_or_path="microsoft/codebert-base", trust_remote_code=False): super(CodeEmbedder, self).__init__() self.config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=trust_remote_code) self.encoder = AutoModel.from_pretrained(model_name_or_path, config=self.config, trust_remote_code=trust_remote_code) def mean_pooling(self, token_embeddings, attention_mask): """ Average the token embeddings, ignoring padding tokens. """ # attention_mask: (batch_size, seq_len) # token_embeddings: (batch_size, seq_len, hidden_dim) # Expand mask to match embedding dimensions input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() # Sum embeddings (ignoring padding) sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # Count non-padding tokens (prevent division by zero with clamp) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask def forward(self, input_ids, attention_mask): # Pass through the transformer outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask) # Extract last hidden state # Shape: (batch_size, seq_len, hidden_dim) last_hidden_state = outputs.last_hidden_state # Perform Mean Pooling (Better than CLS token for sentence similarity) embeddings = self.mean_pooling(last_hidden_state, attention_mask) # Normalize embeddings (Optional but recommended for cosine similarity) embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings