Spaces:
Sleeping
Sleeping
File size: 14,641 Bytes
9b47d4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
dm_control Environment Implementation.
Wraps dm_control.suite environments (cartpole, walker, humanoid, etc.)
with the OpenEnv interface for standardized reinforcement learning.
"""
import base64
import io
import os
import sys
from typing import Any, Dict, Optional
from uuid import uuid4
# Configure MuJoCo rendering backend before importing dm_control
# On macOS, we don't set MUJOCO_GL - use default (glfw) which works
# when running synchronously in the main thread (see reset_async/step_async)
# On Linux, use egl for headless rendering
if "MUJOCO_GL" not in os.environ and sys.platform != "darwin":
os.environ.setdefault("MUJOCO_GL", "egl")
import numpy as np
try:
from openenv.core.env_server.interfaces import Environment
from ..models import DMControlAction, DMControlObservation, DMControlState
except ImportError:
from openenv.core.env_server.interfaces import Environment
try:
import sys
from pathlib import Path
_parent = str(Path(__file__).parent.parent)
if _parent not in sys.path:
sys.path.insert(0, _parent)
from models import DMControlAction, DMControlObservation, DMControlState
except ImportError:
try:
from dm_control_env.models import (
DMControlAction,
DMControlObservation,
DMControlState,
)
except ImportError:
from envs.dm_control_env.models import (
DMControlAction,
DMControlObservation,
DMControlState,
)
class DMControlEnvironment(Environment):
"""
Wraps dm_control.suite environments with the OpenEnv interface.
This environment supports all dm_control.suite domains and tasks including
cartpole, walker, humanoid, cheetah, and more.
Features:
- Dynamic environment switching via reset(domain_name="...", task_name="...")
- Support for all continuous control tasks
- Optional visual observations (base64-encoded images)
- Configurable via constructor or environment variables
Example:
>>> env = DMControlEnvironment()
>>> obs = env.reset() # Default: cartpole/balance
>>> print(obs.observations)
>>>
>>> # Take an action
>>> obs = env.step(DMControlAction(values=[0.5])) # Push cart right
>>> print(obs.reward)
Example with different environment:
>>> env = DMControlEnvironment(domain_name="walker", task_name="walk")
>>> obs = env.reset()
>>>
>>> # Or switch environment on reset
>>> obs = env.reset(domain_name="cheetah", task_name="run")
"""
# dm_control environments are isolated and thread-safe
SUPPORTS_CONCURRENT_SESSIONS = True
def __init__(
self,
domain_name: Optional[str] = None,
task_name: Optional[str] = None,
render_height: Optional[int] = None,
render_width: Optional[int] = None,
):
"""
Initialize the dm_control environment.
Args:
domain_name: The dm_control domain to load.
Env var: DMCONTROL_DOMAIN (default: cartpole)
task_name: The task within the domain.
Env var: DMCONTROL_TASK (default: balance)
render_height: Height of rendered images (when render=True).
Env var: DMCONTROL_RENDER_HEIGHT (default: 480)
render_width: Width of rendered images (when render=True).
Env var: DMCONTROL_RENDER_WIDTH (default: 640)
"""
self._env = None
self._domain_name = domain_name or os.environ.get(
"DMCONTROL_DOMAIN", "cartpole"
)
self._task_name = task_name or os.environ.get("DMCONTROL_TASK", "balance")
self._render_height = (
render_height
if render_height is not None
else int(os.environ.get("DMCONTROL_RENDER_HEIGHT", "480"))
)
self._render_width = (
render_width
if render_width is not None
else int(os.environ.get("DMCONTROL_RENDER_WIDTH", "640"))
)
self._include_pixels = False
self._state = DMControlState(
episode_id=str(uuid4()),
step_count=0,
domain_name=self._domain_name,
task_name=self._task_name,
)
def _load_environment(self, domain_name: str, task_name: str) -> None:
"""Load or switch to a dm_control environment."""
if self._env is not None:
try:
self._env.close()
except Exception:
pass
try:
from dm_control import suite
except ImportError as e:
raise ImportError(
"dm_control is required. Install with: pip install dm_control"
) from e
except Exception as e:
# MuJoCo/OpenGL initialization can fail on macOS
error_msg = str(e)
if sys.platform == "darwin":
raise RuntimeError(
f"Failed to import dm_control (MuJoCo error): {error_msg}\n\n"
"On macOS, try one of these solutions:\n"
"1. Install osmesa: brew install mesa\n"
"2. Run with MUJOCO_GL=glfw (requires display)\n"
"3. Run with MUJOCO_GL=egl (if EGL is available)"
) from e
raise
try:
self._env = suite.load(domain_name=domain_name, task_name=task_name)
except Exception as e:
error_msg = str(e).lower()
# Check for MuJoCo/OpenGL errors
if "gl" in error_msg or "render" in error_msg or "display" in error_msg:
if sys.platform == "darwin":
raise RuntimeError(
f"MuJoCo initialization failed: {e}\n\n"
"On macOS, try one of these solutions:\n"
"1. Install osmesa: brew install mesa\n"
"2. Run with MUJOCO_GL=glfw (requires display)\n"
"3. Set PYOPENGL_PLATFORM=osmesa"
) from e
# Check if it's an invalid environment error
try:
available = [(d, t) for d, t in suite.BENCHMARKING]
raise ValueError(
f"Failed to load {domain_name}/{task_name}. "
f"Available environments: {available[:10]}... "
f"(use dm_control.suite.BENCHMARKING for full list)"
) from e
except Exception:
raise
self._domain_name = domain_name
self._task_name = task_name
self._state.domain_name = domain_name
self._state.task_name = task_name
self._state.action_spec = self._get_action_spec_info()
self._state.observation_spec = self._get_observation_spec_info()
self._state.physics_timestep = self._env.physics.timestep()
self._state.control_timestep = self._env.control_timestep()
def _get_action_spec_info(self) -> Dict[str, Any]:
"""Get information about the action space."""
spec = self._env.action_spec()
return {
"shape": list(spec.shape),
"dtype": str(spec.dtype),
"minimum": spec.minimum.tolist(),
"maximum": spec.maximum.tolist(),
"name": spec.name,
}
def _get_observation_spec_info(self) -> Dict[str, Any]:
"""Get information about the observation space."""
specs = self._env.observation_spec()
obs_info = {}
for name, spec in specs.items():
obs_info[name] = {
"shape": list(spec.shape),
"dtype": str(spec.dtype),
}
return obs_info
def _get_observation(
self,
time_step,
include_pixels: bool = False,
) -> DMControlObservation:
"""Convert dm_control TimeStep to DMControlObservation."""
import dm_env
observations = {}
for name, value in time_step.observation.items():
observations[name] = np.asarray(value).flatten().tolist()
pixels = None
if include_pixels:
try:
frame = self._env.physics.render(
height=self._render_height,
width=self._render_width,
camera_id=0,
)
from PIL import Image
img = Image.fromarray(frame)
buffer = io.BytesIO()
img.save(buffer, format="PNG")
pixels = base64.b64encode(buffer.getvalue()).decode("utf-8")
except Exception:
pass
done = time_step.step_type == dm_env.StepType.LAST
reward = float(time_step.reward) if time_step.reward is not None else 0.0
return DMControlObservation(
observations=observations,
pixels=pixels,
reward=reward,
done=done,
)
def reset(
self,
domain_name: Optional[str] = None,
task_name: Optional[str] = None,
seed: Optional[int] = None,
render: bool = False,
**kwargs,
) -> DMControlObservation:
"""
Reset the environment and return initial observation.
Args:
domain_name: Optionally switch to a different domain.
task_name: Optionally switch to a different task.
seed: Random seed for reproducibility.
render: If True, include pixel observations.
**kwargs: Additional arguments (ignored).
Returns:
DMControlObservation with initial state.
"""
self._include_pixels = render
target_domain = domain_name or self._domain_name
target_task = task_name or self._task_name
if (
self._env is None
or target_domain != self._domain_name
or target_task != self._task_name
):
self._load_environment(target_domain, target_task)
if seed is not None:
np.random.seed(seed)
time_step = self._env.reset()
self._state = DMControlState(
episode_id=str(uuid4()),
step_count=0,
domain_name=self._domain_name,
task_name=self._task_name,
action_spec=self._state.action_spec,
observation_spec=self._state.observation_spec,
physics_timestep=self._state.physics_timestep,
control_timestep=self._state.control_timestep,
)
return self._get_observation(time_step, include_pixels=render)
def step(
self,
action: DMControlAction,
render: bool = False,
**kwargs,
) -> DMControlObservation:
"""
Execute one step in the environment.
Args:
action: DMControlAction with continuous action values.
render: If True, include pixel observations.
Returns:
DMControlObservation with new state, reward, and done flag.
"""
if self._env is None:
raise RuntimeError("Environment not initialized. Call reset() first.")
action_array = np.array(action.values, dtype=np.float64)
action_spec = self._env.action_spec()
expected_shape = action_spec.shape
if action_array.shape != expected_shape:
if action_array.size == np.prod(expected_shape):
action_array = action_array.reshape(expected_shape)
else:
raise ValueError(
f"Action shape {action_array.shape} doesn't match "
f"expected shape {expected_shape}"
)
action_array = np.clip(action_array, action_spec.minimum, action_spec.maximum)
time_step = self._env.step(action_array)
self._state.step_count += 1
return self._get_observation(
time_step, include_pixels=render or self._include_pixels
)
async def reset_async(
self,
domain_name: Optional[str] = None,
task_name: Optional[str] = None,
seed: Optional[int] = None,
render: bool = False,
**kwargs,
) -> DMControlObservation:
"""Async version of reset.
On macOS, runs synchronously to avoid MuJoCo threading crashes.
On other platforms, runs in a thread pool.
"""
if sys.platform == "darwin":
# On macOS, MuJoCo crashes when run in a background thread
# Run synchronously (blocks event loop but avoids crash)
return self.reset(
domain_name=domain_name,
task_name=task_name,
seed=seed,
render=render,
**kwargs,
)
else:
import asyncio
return await asyncio.to_thread(
self.reset,
domain_name=domain_name,
task_name=task_name,
seed=seed,
render=render,
**kwargs,
)
async def step_async(
self,
action: DMControlAction,
render: bool = False,
**kwargs,
) -> DMControlObservation:
"""Async version of step.
On macOS, runs synchronously to avoid MuJoCo threading crashes.
On other platforms, runs in a thread pool.
"""
if sys.platform == "darwin":
# On macOS, MuJoCo crashes when run in a background thread
# Run synchronously (blocks event loop but avoids crash)
return self.step(action, render=render, **kwargs)
else:
import asyncio
return await asyncio.to_thread(self.step, action, render=render, **kwargs)
@property
def state(self) -> DMControlState:
"""Get the current environment state."""
return self._state
def close(self) -> None:
"""Close the dm_control environment."""
env = getattr(self, "_env", None)
if env is not None:
try:
env.close()
except Exception:
pass
self._env = None
def __del__(self):
"""Cleanup on deletion."""
try:
self.close()
except Exception:
pass
|