BitDance-Tokenizer (Diffusers)
Diffusers-formatted BitDance tokenizer autoencoders (AE) converted from the upstream BitDance tokenizer checkpoints.
Available Autoencoders
ae_d16c32(z_channels=32,gan_decoder=false)ae_d32c128(z_channels=128,gan_decoder=true)ae_d32c256(z_channels=256,gan_decoder=true)
Each subfolder includes:
config.jsonwith the autoencoder architectureconversion_metadata.jsondocumenting the source checkpoint and config
Test (load tokenizer only)
This repo is self-contained: it includes bitdance_diffusers (copied from BitDance-14B-64x-diffusers) for the BitDanceAutoencoder class. Run the test to verify loading and encode/decode:
The test loads all three autoencoders and runs a quick encode/decode check with ae_d16c32 (no full image generation).
Loading tokenizer autoencoders
import sys
from pathlib import Path
# Self-contained: add local path so bitdance_diffusers is found
BASE_DIR = Path(__file__).resolve().parent
sys.path.insert(0, str(BASE_DIR))
from bitdance_diffusers import BitDanceAutoencoder
# Load any tokenizer autoencoder (use repo path or local path)
ae = BitDanceAutoencoder.from_pretrained(
"BiliSakura/BitDance-Tokenizer-diffusers", # or str(BASE_DIR) for local
subfolder="ae_d16c32",
)
# ae_d16c32: z_channels=32, patch_size=16
# ae_d32c128: z_channels=128, patch_size=32
# ae_d32c256: z_channels=256, patch_size=32
Using with a BitDance pipeline (full inference)
To swap a tokenizer into a BitDance diffusers pipeline for image generation:
import torch
from diffusers import DiffusionPipeline
# Load a BitDance diffusers pipeline first (provides BitDanceAutoencoder class).
pipe = DiffusionPipeline.from_pretrained(
"BiliSakura/BitDance-14B-16x-diffusers",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to("cuda")
# Swap in a tokenizer autoencoder from this repository.
pipe.autoencoder = pipe.autoencoder.__class__.from_pretrained(
"BiliSakura/BitDance-Tokenizer-diffusers",
subfolder="ae_d16c32",
).to("cuda")
image = pipe(
prompt="A watercolor painting of a red fox in a snowy forest.",
height=1024,
width=1024,
).images[0]
image.save("bitdance_with_custom_tokenizer.png")
Note: this repository stores tokenizer autoencoder components; use
trust_remote_code=Truewith a BitDance runtime repo when loading custom classes.
Citation
If you use this model, please cite BitDance and Diffusers:
@article{ai2026bitdance,
title = {BitDance: Scaling Autoregressive Generative Models with Binary Tokens},
author = {Ai, Yuang and Han, Jiaming and Zhuang, Shaobin and Hu, Xuefeng and Yang, Ziyan and Yang, Zhenheng and Huang, Huaibo and Yue, Xiangyu and Chen, Hao},
journal = {arXiv preprint arXiv:2602.14041},
year = {2026}
}
@inproceedings{von-platen-etal-2022-diffusers,
title = {Diffusers: State-of-the-art diffusion models},
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Damar Jablonski and Hernan Bischof and Thomas Wolf},
booktitle = {GitHub repository},
year = {2022},
url = {https://github.com/huggingface/diffusers}
}
License
This repository is distributed under the Apache-2.0 license, consistent with the upstream BitDance release.
- Downloads last month
- -
Model tree for BiliSakura/BitDance-Tokenizer-diffusers
Base model
shallowdream204/BitDance-Tokenizer