File size: 15,366 Bytes
dd539a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
from __future__ import annotations
import math
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
try:
from flash_attn import flash_attn_func # type: ignore
_FLASH_ATTN_AVAILABLE = True
except ImportError:
flash_attn_func = None # type: ignore
_FLASH_ATTN_AVAILABLE = False
def timestep_embedding(t: torch.Tensor, dim: int, max_period: int = 10000, time_factor: float = 1000.0) -> torch.Tensor:
half = dim // 2
t = time_factor * t.float()
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
args = t[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
def time_shift_func(t: torch.Tensor, flow_shift: float = 1.0, sigma: float = 1.0) -> torch.Tensor:
return (1.0 / flow_shift) / ((1.0 / flow_shift) + (1.0 / t - 1.0) ** sigma)
def get_score_from_velocity(velocity: torch.Tensor, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
alpha_t, d_alpha_t = t, 1
sigma_t, d_sigma_t = 1 - t, -1
mean = x
reverse_alpha_ratio = alpha_t / d_alpha_t
var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
score = (reverse_alpha_ratio * velocity - mean) / var
return score
def get_velocity_from_cfg(velocity: torch.Tensor, cfg: float, cfg_mult: int) -> torch.Tensor:
if cfg_mult == 2:
cond_v, uncond_v = torch.chunk(velocity, 2, dim=0)
velocity = uncond_v + cfg * (cond_v - uncond_v)
return velocity
def _randn_like(x: torch.Tensor, generator: Optional[torch.Generator]) -> torch.Tensor:
if generator is None:
return torch.randn_like(x)
return torch.randn(x.shape, device=x.device, dtype=x.dtype, generator=generator)
def euler_step(x: torch.Tensor, v: torch.Tensor, dt: float, cfg: float, cfg_mult: int) -> torch.Tensor:
with torch.amp.autocast("cuda", enabled=False):
v = v.to(torch.float32)
v = get_velocity_from_cfg(v, cfg, cfg_mult)
x = x + v * dt
return x
def euler_maruyama_step(
x: torch.Tensor,
v: torch.Tensor,
t: torch.Tensor,
dt: float,
cfg: float,
cfg_mult: int,
generator: Optional[torch.Generator],
) -> torch.Tensor:
with torch.amp.autocast("cuda", enabled=False):
v = v.to(torch.float32)
v = get_velocity_from_cfg(v, cfg, cfg_mult)
score = get_score_from_velocity(v, x, t)
drift = v + (1 - t) * score
noise_scale = (2.0 * (1.0 - t) * dt) ** 0.5
x = x + drift * dt + noise_scale * _randn_like(x, generator=generator)
return x
def euler_maruyama(
input_dim: int,
forward_fn,
c: torch.Tensor,
cfg: float = 1.0,
num_sampling_steps: int = 20,
last_step_size: float = 0.05,
time_shift: float = 1.0,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
cfg_mult = 1
if cfg > 1.0:
cfg_mult += 1
x_shape = list(c.shape)
x_shape[0] = x_shape[0] // cfg_mult
x_shape[-1] = input_dim
x = torch.randn(x_shape, device=c.device, dtype=c.dtype, generator=generator)
t_all = torch.linspace(0, 1 - last_step_size, num_sampling_steps + 1, device=c.device, dtype=torch.float32)
t_all = time_shift_func(t_all, time_shift)
dt = t_all[1:] - t_all[:-1]
t = torch.tensor(0.0, device=c.device, dtype=torch.float32)
t_batch = torch.zeros(c.shape[0], device=c.device, dtype=c.dtype)
for i in range(num_sampling_steps):
t_batch[:] = t
combined = torch.cat([x] * cfg_mult, dim=0)
output = forward_fn(combined, t_batch, c)
if output.dim() == 2:
v = (output - combined) / (1 - t_batch.view(-1, 1)).clamp_min(0.05)
elif output.dim() == 3:
v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
else:
raise ValueError(f"Unsupported output rank from diffusion head: {output.dim()}")
x = euler_maruyama_step(x, v, t, float(dt[i]), cfg, cfg_mult, generator=generator)
t += dt[i]
combined = torch.cat([x] * cfg_mult, dim=0)
t_batch[:] = 1 - last_step_size
output = forward_fn(combined, t_batch, c)
if output.dim() == 2:
v = (output - combined) / (1 - t_batch.view(-1, 1)).clamp_min(0.05)
elif output.dim() == 3:
v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
else:
raise ValueError(f"Unsupported output rank from diffusion head: {output.dim()}")
x = euler_step(x, v, last_step_size, cfg, cfg_mult)
return torch.cat([x] * cfg_mult, dim=0)
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size: int, frequency_embedding_size: int = 256) -> None:
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t: torch.Tensor) -> torch.Tensor:
t_freq = timestep_embedding(t, self.frequency_embedding_size)
t_freq = t_freq.to(self.mlp[0].weight.dtype)
return self.mlp(t_freq)
class FinalLayer(nn.Module):
def __init__(self, channels: int, out_channels: int) -> None:
super().__init__()
self.norm_final = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=False)
self.ada_ln_modulation = nn.Linear(channels, channels * 2, bias=True)
self.linear = nn.Linear(channels, out_channels, bias=True)
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
scale, shift = self.ada_ln_modulation(y).chunk(2, dim=-1)
x = self.norm_final(x) * (1.0 + scale) + shift
return self.linear(x)
class Attention(nn.Module):
def __init__(self, dim: int, n_head: int) -> None:
super().__init__()
if dim % n_head != 0:
raise ValueError(f"dim ({dim}) must be divisible by n_head ({n_head}).")
self.dim = dim
self.head_dim = dim // n_head
self.n_head = n_head
total_kv_dim = (self.n_head * 3) * self.head_dim
self.wqkv = nn.Linear(dim, total_kv_dim, bias=True)
self.wo = nn.Linear(dim, dim, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wqkv(x).chunk(3, dim=-1)
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_head, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_head, self.head_dim)
if _FLASH_ATTN_AVAILABLE and xq.is_cuda:
output = flash_attn_func(xq, xk, xv, causal=False)
else:
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
output = F.scaled_dot_product_attention(xq, xk, xv, dropout_p=0.0, is_causal=False)
output = output.transpose(1, 2).contiguous()
output = output.view(bsz, seqlen, self.dim)
return self.wo(output)
class TransBlock(nn.Module):
def __init__(self, channels: int, use_swiglu: bool = False) -> None:
super().__init__()
self.channels = channels
self.norm1 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
self.attn = Attention(channels, n_head=channels // 128)
self.norm2 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
hidden_dim = int(channels * 1.5)
self.use_swiglu = use_swiglu
if not use_swiglu:
self.mlp = nn.Sequential(
nn.Linear(channels, hidden_dim),
nn.SiLU(),
nn.Linear(hidden_dim, channels),
)
else:
self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
self.w2 = nn.Linear(hidden_dim, channels, bias=True)
def forward(
self,
x: torch.Tensor,
scale1: torch.Tensor,
shift1: torch.Tensor,
gate1: torch.Tensor,
scale2: torch.Tensor,
shift2: torch.Tensor,
gate2: torch.Tensor,
) -> torch.Tensor:
h = self.norm1(x) * (1 + scale1) + shift1
h = self.attn(h)
x = x + h * gate1
h = self.norm2(x) * (1 + scale2) + shift2
if not self.use_swiglu:
h = self.mlp(h)
else:
h1, h2 = self.w1(h).chunk(2, dim=-1)
h = self.w2(F.silu(h1) * h2)
return x + h * gate2
class TransEncoder(nn.Module):
def __init__(
self,
in_channels: int,
model_channels: int,
z_channels: int,
num_res_blocks: int,
num_ada_ln_blocks: int = 2,
grad_checkpointing: bool = False,
parallel_num: int = 4,
use_swiglu: bool = False,
) -> None:
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = in_channels
self.num_res_blocks = num_res_blocks
self.grad_checkpointing = grad_checkpointing
self.parallel_num = parallel_num
self.time_embed = TimestepEmbedder(model_channels)
self.cond_embed = nn.Linear(z_channels, model_channels)
self.input_proj = nn.Linear(in_channels, model_channels)
self.res_blocks = nn.ModuleList([TransBlock(model_channels, use_swiglu) for _ in range(num_res_blocks)])
self.ada_ln_blocks = nn.ModuleList(
[nn.Linear(model_channels, model_channels * 6, bias=True) for _ in range(num_ada_ln_blocks)]
)
self.ada_ln_switch_freq = max(1, num_res_blocks // num_ada_ln_blocks)
if (num_res_blocks % self.ada_ln_switch_freq) != 0:
raise ValueError("num_res_blocks must be divisible by num_ada_ln_blocks")
self.final_layer = FinalLayer(model_channels, self.out_channels)
self.initialize_weights()
def initialize_weights(self) -> None:
def _basic_init(module: nn.Module) -> None:
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
for block in self.ada_ln_blocks:
nn.init.constant_(block.weight, 0)
nn.init.constant_(block.bias, 0)
nn.init.constant_(self.final_layer.ada_ln_modulation.weight, 0)
nn.init.constant_(self.final_layer.ada_ln_modulation.bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x: torch.Tensor, t: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
dtype = next(self.parameters()).dtype
x = x.to(dtype)
t = t.to(dtype)
c = c.to(dtype)
x = self.input_proj(x)
t = self.time_embed(t).unsqueeze(1)
c = self.cond_embed(c)
y = F.silu(t + c)
scale1, shift1, gate1, scale2, shift2, gate2 = self.ada_ln_blocks[0](y).chunk(6, dim=-1)
for i, block in enumerate(self.res_blocks):
if i > 0 and i % self.ada_ln_switch_freq == 0:
ada_ln_block = self.ada_ln_blocks[i // self.ada_ln_switch_freq]
scale1, shift1, gate1, scale2, shift2, gate2 = ada_ln_block(y).chunk(6, dim=-1)
x = block(x, scale1, shift1, gate1, scale2, shift2, gate2)
output = self.final_layer(x, y)
return 2 * torch.sigmoid(output) - 1
class BitDanceDiffusionHead(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
ch_target: int,
ch_cond: int,
ch_latent: int,
depth_latent: int,
depth_adanln: int,
grad_checkpointing: bool = False,
time_shift: float = 1.0,
time_schedule: str = "logit_normal",
P_mean: float = 0.0,
P_std: float = 1.0,
parallel_num: int = 4,
diff_batch_mul: int = 1,
use_swiglu: bool = False,
) -> None:
super().__init__()
self.ch_target = ch_target
self.time_shift = time_shift
self.time_schedule = time_schedule
self.P_mean = P_mean
self.P_std = P_std
self.diff_batch_mul = diff_batch_mul
self.net = TransEncoder(
in_channels=ch_target,
model_channels=ch_latent,
z_channels=ch_cond,
num_res_blocks=depth_latent,
num_ada_ln_blocks=depth_adanln,
grad_checkpointing=grad_checkpointing,
parallel_num=parallel_num,
use_swiglu=use_swiglu,
)
def forward(self, x: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
with torch.autocast(device_type="cuda", enabled=False):
with torch.no_grad():
if self.time_schedule == "logit_normal":
t = (torch.randn((x.shape[0]), device=x.device) * self.P_std + self.P_mean).sigmoid()
if self.time_shift != 1.0:
t = time_shift_func(t, self.time_shift)
elif self.time_schedule == "uniform":
t = torch.rand((x.shape[0]), device=x.device)
if self.time_shift != 1.0:
t = time_shift_func(t, self.time_shift)
else:
raise NotImplementedError(f"Unknown time_schedule={self.time_schedule}")
e = torch.randn_like(x)
ti = t.view(-1, 1, 1)
z = (1.0 - ti) * e + ti * x
v = (x - z) / (1 - ti).clamp_min(0.05)
if self.diff_batch_mul > 1:
chunks = self.diff_batch_mul
x_pred_list = []
z_chunks = torch.chunk(z, chunks, dim=0)
t_chunks = torch.chunk(t, chunks, dim=0)
cond_chunks = torch.chunk(cond, chunks, dim=0)
for z_i, t_i, cond_i in zip(z_chunks, t_chunks, cond_chunks):
x_pred_list.append(self.net(z_i, t_i, cond_i))
x_pred = torch.cat(x_pred_list, dim=0)
else:
x_pred = self.net(z, t, cond)
v_pred = (x_pred - z) / (1 - ti).clamp_min(0.05)
with torch.autocast(device_type="cuda", enabled=False):
v_pred = v_pred.float()
loss = torch.mean((v - v_pred) ** 2, dim=2)
return loss
def sample(
self,
z: torch.Tensor,
cfg: float,
num_sampling_steps: int,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
return euler_maruyama(
self.ch_target,
self.net.forward,
z,
cfg,
num_sampling_steps=num_sampling_steps,
time_shift=self.time_shift,
generator=generator,
)
def initialize_weights(self) -> None:
self.net.initialize_weights()
|