ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation
Paper
•
2310.17389
•
Published
An experimental text classification model fine-tuned from Microsoft/DeBERTa-V3 base for Cockatoo
This model is licensed under the Apache-2.0 license.
Available Labels:
"id2label": {
"0": "scam",
"1": "violence",
"2": "harassment",
"3": "hate_speech",
"4": "toxicity",
"5": "obscenity"
}
Constellation One achieves a near-SOTA levels of performance within its weight class, specifically excelling in detecting scams and harassment.
By default, the model has very high recall values (~0.9) in all categories. After tuning threshold values, recall values will drop to ~0.81, but F1 will increase to ~0.74.
Thresholds:
LABEL_THRESHOLDS = {
'scam': 0.5,
'violence': 0.5,
'harassment': 0.5,
'hate_speech': 0.5,
'toxicity': 0.5,
'obscenity': 0.5
}
Raw Eval Metrics:
{
"eval_loss":0.16034406423568726,
"eval_precision":0.6059971310039647,
"eval_recall":0.9138250950483955,
"eval_f1":0.7164361696270752,
"eval_precision_scam":0.9117559964465501,
"eval_recall_scam":0.9532507739938081,
"eval_f1_scam":0.9320417738761919,
"eval_precision_violence":0.42734150795721365,
"eval_recall_violence":0.8970427163198248,
"eval_f1_violence":0.5789008658773634,
"eval_precision_harassment":0.7726063829787234,
"eval_recall_harassment":0.9423076923076923,
"eval_f1_harassment":0.8490605427974948,
"eval_precision_hate_speech":0.429821819318537,
"eval_recall_hate_speech":0.8969341161121983,
"eval_f1_hate_speech":0.5811496196111581,
"eval_precision_toxicity":0.5737432488574989,
"eval_recall_toxicity":0.8712933753943217,
"eval_f1_toxicity":0.6918837675350702,
"eval_precision_obscenity":0.5207138304652645,
"eval_recall_obscenity":0.9221218961625283,
"eval_f1_obscenity":0.6655804480651731,
"eval_runtime":247.1414,
"eval_samples_per_second":117.512,
"eval_steps_per_second":2.452
}
Thresholds:
LABEL_THRESHOLDS = {
'scam': 0.60,
'violence': 0.73,
'harassment': 0.70,
'hate_speech': 0.80,
'toxicity': 0.75,
'obscenity': 0.85
}
Raw Eval Metrics:
{
"eval_loss":0.16034406423568726,
"eval_precision":0.6939850223558622,
"eval_recall":0.8150767410772812,
"eval_f1":0.7475019013835578,
"eval_precision_scam":0.9255447941888619,
"eval_recall_scam":0.9467492260061919,
"eval_f1_scam":0.936026936026936,
"eval_precision_violence":0.5140955364134691,
"eval_recall_violence":0.7190580503833516,
"eval_f1_violence":0.5995433789954338,
"eval_precision_harassment":0.8238218763510592,
"eval_recall_harassment":0.8829935125115848,
"eval_f1_harassment":0.8523820174457616,
"eval_precision_hate_speech":0.5606936416184971,
"eval_recall_hate_speech":0.6960208741030659,
"eval_f1_hate_speech":0.6210710128055879,
"eval_precision_toxicity":0.6890574214517876,
"eval_recall_toxicity":0.8025236593059937,
"eval_f1_toxicity":0.7414747886913436,
"eval_precision_obscenity":0.6506968641114983,
"eval_recall_obscenity":0.8431151241534989,
"eval_f1_obscenity":0.7345132743362832,
"eval_runtime":378.4334,
"eval_samples_per_second":76.743,
"eval_steps_per_second":1.601
}
Training/Inferencing server: https://github.com/DominicTWHV/Cockatoo_ML_Training/
Training Metrics: https://cockatoo.dev/ml-training.html
| Dataset | License | Link |
|---|---|---|
| Phishing Dataset | MIT | Hugging Face |
| Measuring Hate Speech | CC-BY-4.0 | Hugging Face |
| Tweet Eval (SemEval-2019) | [See Citation]* | Hugging Face |
| Toxic Chat | CC-BY-NC-4.0 | Hugging Face |
| Jigsaw Toxicity | Apache-2.0 | Hugging Face |
| Text Moderation Multilingual | Apache-2.0 | Hugging Face |
@article{kennedy2020constructing,
title={Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application},
author={Kennedy, Chris J and Bacon, Geoff and Sahn, Alexander and von Vacano, Claudia},
journal={arXiv preprint arXiv:2009.10277},
year={2020}
}
@inproceedings{basile-etal-2019-semeval,
title = "{S}em{E}val-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in {T}witter",
author = "Basile, Valerio and Bosco, Cristina and Fersini, Elisabetta and Nozza, Debora and Patti, Viviana and Rangel Pardo, Francisco Manuel and Rosso, Paolo and Sanguinetti, Manuela",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/S19-2007",
doi = "10.18653/v1/S19-2007",
pages = "54--63"
}
@misc{lin2023toxicchat,
title={ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation},
author={Zi Lin and Zihan Wang and Yongqi Tong and Yangkun Wang and Yuxin Guo and Yujia Wang and Jingbo Shang},
year={2023},
eprint={2310.17389},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{text-moderation-large,
title={Text-Moderation-Multilingual: A Multilingual Text Moderation Dataset},
author={[KoalaAI]},
year={2025},
note={Aggregated from ifmain's and OpenAI's moderation datasets}
}
Base model
microsoft/deberta-v3-base