Dataset Viewer
Auto-converted to Parquet Duplicate
date
stringdate
2024-07-11 00:00:00
2024-07-11 00:00:00
time
stringclasses
2 values
class
stringclasses
2 values
video
stringclasses
2 values
frame_number
int32
1
2.76k
camera
stringclasses
1 value
body_image
imagewidth (px)
168
614
2024-07-11
09:49:28
Tilla
video_1.MP4
15
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
16
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
18
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
20
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
21
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
22
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
25
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
26
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
27
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
28
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
30
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
31
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
32
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
151
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
152
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
153
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
154
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
155
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
156
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
157
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
158
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
159
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
160
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
161
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
162
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
163
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
164
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
165
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
166
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
167
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
168
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
169
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
170
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
227
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
228
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
229
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
230
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
231
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
232
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
233
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
234
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
235
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
236
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
237
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
238
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
267
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
268
zoo1
2024-07-11
09:49:28
Tilla
video_1.MP4
269
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
1
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
2
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
3
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
4
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
5
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
6
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
7
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
8
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
9
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
10
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
11
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
12
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
13
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
14
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
15
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
16
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
17
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
18
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
19
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
20
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
21
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
22
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
23
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
24
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
25
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
26
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
27
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
28
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
29
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
30
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
31
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
32
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
33
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
34
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
35
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
36
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
37
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
38
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
39
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
40
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
41
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
42
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
43
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
44
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
45
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
46
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
47
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
48
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
49
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
50
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
51
zoo1
2024-07-11
12:31:54
M'Penzi
video_2.MP4
52
zoo1
End of preview. Expand in Data Studio

Zoo Animal Re-Identification Dataset

A dataset for animal re-identification with 2,705 body images, 1,192 face crops, and 6 configurations.

Configurations

1. face_and_body

Individual frames with both face and body crops.

Features:

  • date: Date of capture (YYYY-MM-DD)
  • time: Time of capture (HH:MM:SS)
  • class: Animal name
  • video: Source video filename
  • frame_number: Frame number in video
  • camera: Camera ID
  • face_image: Cropped face image
  • body_image: Cropped body/full image

2. body_only

Individual frames with body crops only.

Features:

  • date, time, class, video, frame_number, camera: Same as above
  • body_image: Cropped body image

3. original_with_face_body_bbox

Full original frames.

Features:

  • date, time, class, video, frame_number, camera: Same as above
  • image: Original full image

4. original_with_body_bbox

Full original frames.

Features:

  • date, time, class, video, frame_number, camera: Same as above
  • image: Original full image

5. face_tracklets

Face images grouped by tracklet (animal + video). Each row contains all face crops from one animal in one video, ordered by frame number.

Features:

  • class: Animal name
  • video: Source video filename
  • camera: Camera ID
  • frame_numbers: List of frame numbers (ordered)
  • face_images: Sequence of face images (ordered by frame)

6. body_tracklets

Body images grouped by tracklet (animal + video). Each row contains all body crops from one animal in one video, ordered by frame number.

Features:

  • class: Animal name
  • video: Source video filename
  • camera: Camera ID
  • frame_numbers: List of frame numbers (ordered)
  • body_images: Sequence of body images (ordered by frame)

Usage

from datasets import load_dataset

# Load individual frames with face and body
ds = load_dataset("Maxscha/test", "face_and_body", split="test")
print(ds[0]["face_image"])  # PIL Image
print(ds[0]["class"])  # Animal name

# Load face tracklets
ds = load_dataset("Maxscha/test", "face_tracklets", split="test")
print(len(ds[0]["face_images"]))  # Number of faces in this tracklet
print(ds[0]["class"])  # Animal name for this tracklet

# Load body tracklets
ds = load_dataset("Maxscha/test", "body_tracklets", split="test")
for img in ds[0]["body_images"]:
    print(img)  # Each PIL Image in the tracklet sequence

Animals

The dataset contains images of 5 animals:

  • Sango
  • Tilla
  • M'Penzi
  • Bibi
  • Djambala

License

MIT

Downloads last month
30