Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Invalid value. in row 0
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 183, in _generate_tables
                  df = pandas_read_json(f)
                       ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 791, in read_json
                  json_reader = JsonReader(
                                ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 905, in __init__
                  self.data = self._preprocess_data(data)
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data
                  data = data.read()
                         ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 844, in read_with_retries
                  out = read(*args, **kwargs)
                        ^^^^^^^^^^^^^^^^^^^^^
                File "<frozen codecs>", line 322, in decode
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0x89 in position 0: invalid start byte
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3608, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2368, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2573, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2060, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2082, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 544, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 383, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 186, in _generate_tables
                  raise e
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables
                  pa_table = paj.read_json(
                             ^^^^^^^^^^^^^^
                File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning

[CVPR 2023 Highlight (top 2.5%)]

Paper: Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning

Authors: Zhuowan Li, Xingrui Wang, Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin Van Durme, Alan Yuille

Dataset Description

Super-CLEVR is a synthetic dataset designed to systematically study the domain robustness of visual reasoning models across four key factors:

  • Visual complexity — varying levels of scene and object complexity
  • Question redundancy — controlling redundant information in questions
  • Concept distribution — shifts in the distribution of visual concepts
  • Concept compositionality — novel compositions of known concepts

Dataset

Super-CLEVR contains 30k images of vehicles (from UDA-Part) randomly placed in the scenes, with 10 question-answer pairs for each image. The vehicles have part annotations and so the objects in the images can have distinct part attributes.

Here [link] is the list of objects and parts in Super-CLEVR scenes.

The first 20k images and paired are used for training, the next 5k for validation and the last 5k for testing.

The dataset is available on Hugging Face:

Data Download Link
images images.zip
scenes superCLEVR_scenes.json
questions superCLEVR_questions_30k.json
questions (- redundancy) superCLEVR_questions_30k_NoRedundant.json
questions (+ redundancy) superCLEVR_questions_30k_AllRedundant.json

Usage

from huggingface_hub import hf_hub_download

# Download a specific file
path = hf_hub_download(
    repo_id="RyanWW/Super-CLEVR",
    filename="superCLEVR_questions_30k.json",
    repo_type="dataset",
)

Citation

@inproceedings{li2023super,
  title={Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning},
  author={Li, Zhuowan and Wang, Xingrui and Stengel-Eskin, Elias and Kortylewski, Adam and Ma, Wufei and Van Durme, Benjamin and Yuille, Alan L},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={14963--14973},
  year={2023}
}

Links

License

This dataset is released under the MIT License.

Downloads last month
-

Paper for RyanWW/Super-CLEVR