YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
bitsandbytes-mps
Metal (MPS) kernels for bitsandbytes 4-bit quantization on Apple Silicon.
Provides NF4 and FP4 blockwise quantization, dequantization, and fused GEMV/GEMM operations for efficient inference with 4-bit quantized models on macOS.
Operations
| Operation | Description |
|---|---|
quantize_4bit |
Blockwise 4-bit quantization (NF4/FP4) with per-block absmax |
dequantize_4bit |
Blockwise 4-bit dequantization using codebook lookup |
gemv_4bit |
Fused dequantize + matrix-vector multiply (batch_size=1 inference) |
gemm_4bit |
Fused dequantize + matrix-matrix multiply (larger batch inference) |
linear_4bit |
Auto-selecting linear layer (GEMV for vectors, GEMM for matrices) |
Quantization Format
Uses the bitsandbytes blockwise quantization scheme:
- Packing: 2 values per byte (high nibble = first element, low nibble = second)
- Scaling: One
absmax(float32) per block ofblocksizeelements - Codebook: NF4 (16 values optimized for normal distributions) or FP4 (sign-magnitude floating point)
- Dequantization:
value = codebook[4bit_index] * absmax
Usage
import torch
from bitsandbytes_mps import quantize_4bit, dequantize_4bit, gemv_4bit, gemm_4bit, NF4
# Quantize a weight matrix
weight = torch.randn(4096, 4096, dtype=torch.float16, device="mps")
packed, absmax = quantize_4bit(weight.flatten(), blocksize=64, quant_type=NF4)
# Dequantize
weight_deq = dequantize_4bit(packed, absmax, blocksize=64, quant_type=NF4,
numel=weight.numel(), output_dtype=torch.float16)
# Fused GEMV (single vector)
x = torch.randn(4096, dtype=torch.float16, device="mps")
packed_w = packed.view(4096, -1) # [N, K/2]
absmax_w = absmax.view(4096, -1) # [N, K_groups]
y = gemv_4bit(x, packed_w, absmax_w, output_features=4096, blocksize=64, quant_type=NF4)
# Fused GEMM (batch of vectors)
X = torch.randn(8, 4096, dtype=torch.float16, device="mps")
Y = gemm_4bit(X, packed_w, absmax_w, output_features=4096, blocksize=64, quant_type=NF4)
Supported Configurations
- Scalar types: float16, bfloat16, float32
- Block sizes: 64, 128
- Quant types: FP4, NF4
Architecture
The kernels are adapted from MLX quantization Metal kernels with the following modifications:
- Codebook-based dequantization replaces MLX's affine
scale * q + biaswithcodebook[q] * absmax - BnB packing format: high nibble first (vs MLX's low nibble first)
BnBQuantizedBlockLoader: Custom block loader for tiled GEMM that dequantizes on-the-fly using codebook lookup- Binary search quantization: Efficient NF4/FP4 quantization using decision trees (matching CUDA kernels)
Building
pip install kernel-builder
kernel-builder build .
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support