update ldb
#2
by
QuentinJG
- opened
- app.py +9 -7
- app/utils.py +14 -6
- data/pipeline_handler.py +3 -3
app.py
CHANGED
|
@@ -40,13 +40,14 @@ def main():
|
|
| 40 |
|
| 41 |
deprecated_model_handler = DeprecatedModelHandler()
|
| 42 |
initial_metric = "ndcg_at_5"
|
|
|
|
| 43 |
|
| 44 |
# Get pipeline evaluation results
|
| 45 |
pipeline_handler = PipelineHandler()
|
| 46 |
pipeline_handler.get_pipeline_data()
|
| 47 |
initial_language = "overall"
|
| 48 |
-
data_pipeline = pipeline_handler.render_df(
|
| 49 |
-
data_pipeline = add_rank_and_format(data_pipeline, benchmark_version=3)
|
| 50 |
|
| 51 |
num_datasets_pipeline = len(data_pipeline.columns) - 4 # Excluding Rank, Model, QPS, Average
|
| 52 |
num_scores_pipeline = len(data_pipeline) * num_datasets_pipeline
|
|
@@ -133,7 +134,7 @@ def main():
|
|
| 133 |
></iframe>
|
| 134 |
"""
|
| 135 |
)
|
| 136 |
-
with gr.TabItem("ViDoRe V3 (Pipeline
|
| 137 |
gr.Markdown("# ViDoRe V3 (Pipeline Evaluation): Retrieval Performance for complex pipelines🔍⚙️")
|
| 138 |
gr.Markdown("### Complete pipeline evaluation including compute costs and timing metrics")
|
| 139 |
|
|
@@ -157,7 +158,7 @@ def main():
|
|
| 157 |
language_choices.append((lang.capitalize(), lang))
|
| 158 |
|
| 159 |
with gr.Row():
|
| 160 |
-
metric_dropdown_pipeline = gr.Dropdown(choices=METRICS, value=
|
| 161 |
language_dropdown_pipeline = gr.Dropdown(
|
| 162 |
choices=language_choices,
|
| 163 |
value="overall",
|
|
@@ -191,7 +192,7 @@ def main():
|
|
| 191 |
def update_data_pipeline(metric, language, search_term, selected_columns):
|
| 192 |
pipeline_handler.get_pipeline_data()
|
| 193 |
data = pipeline_handler.render_df(metric, language)
|
| 194 |
-
data = add_rank_and_format(data, benchmark_version=3, selected_columns=selected_columns)
|
| 195 |
data = filter_models(data, search_term)
|
| 196 |
if selected_columns:
|
| 197 |
# Include core columns plus selected dataset columns
|
|
@@ -206,7 +207,8 @@ def main():
|
|
| 206 |
refresh_button_pipeline.click(
|
| 207 |
lambda metric, language: add_rank_and_format(
|
| 208 |
pipeline_handler.render_df(metric, language),
|
| 209 |
-
benchmark_version=3
|
|
|
|
| 210 |
),
|
| 211 |
inputs=[metric_dropdown_pipeline, language_dropdown_pipeline],
|
| 212 |
outputs=dataframe_pipeline,
|
|
@@ -224,7 +226,7 @@ def main():
|
|
| 224 |
def refresh_pipeline_data(metric, language):
|
| 225 |
"""Refresh pipeline data when metric or language changes."""
|
| 226 |
df = pipeline_handler.render_df(metric, language)
|
| 227 |
-
return add_rank_and_format(df, benchmark_version=3)
|
| 228 |
|
| 229 |
metric_dropdown_pipeline.change(
|
| 230 |
refresh_pipeline_data,
|
|
|
|
| 40 |
|
| 41 |
deprecated_model_handler = DeprecatedModelHandler()
|
| 42 |
initial_metric = "ndcg_at_5"
|
| 43 |
+
initial_metric_v3 = "ndcg_at_10"
|
| 44 |
|
| 45 |
# Get pipeline evaluation results
|
| 46 |
pipeline_handler = PipelineHandler()
|
| 47 |
pipeline_handler.get_pipeline_data()
|
| 48 |
initial_language = "overall"
|
| 49 |
+
data_pipeline = pipeline_handler.render_df(initial_metric_v3, initial_language)
|
| 50 |
+
data_pipeline = add_rank_and_format(data_pipeline, benchmark_version=3, is_pipeline=True)
|
| 51 |
|
| 52 |
num_datasets_pipeline = len(data_pipeline.columns) - 4 # Excluding Rank, Model, QPS, Average
|
| 53 |
num_scores_pipeline = len(data_pipeline) * num_datasets_pipeline
|
|
|
|
| 134 |
></iframe>
|
| 135 |
"""
|
| 136 |
)
|
| 137 |
+
with gr.TabItem("ViDoRe V3 (Pipeline)"):
|
| 138 |
gr.Markdown("# ViDoRe V3 (Pipeline Evaluation): Retrieval Performance for complex pipelines🔍⚙️")
|
| 139 |
gr.Markdown("### Complete pipeline evaluation including compute costs and timing metrics")
|
| 140 |
|
|
|
|
| 158 |
language_choices.append((lang.capitalize(), lang))
|
| 159 |
|
| 160 |
with gr.Row():
|
| 161 |
+
metric_dropdown_pipeline = gr.Dropdown(choices=METRICS, value=initial_metric_v3, label="Select Metric")
|
| 162 |
language_dropdown_pipeline = gr.Dropdown(
|
| 163 |
choices=language_choices,
|
| 164 |
value="overall",
|
|
|
|
| 192 |
def update_data_pipeline(metric, language, search_term, selected_columns):
|
| 193 |
pipeline_handler.get_pipeline_data()
|
| 194 |
data = pipeline_handler.render_df(metric, language)
|
| 195 |
+
data = add_rank_and_format(data, benchmark_version=3, selected_columns=selected_columns, is_pipeline=True)
|
| 196 |
data = filter_models(data, search_term)
|
| 197 |
if selected_columns:
|
| 198 |
# Include core columns plus selected dataset columns
|
|
|
|
| 207 |
refresh_button_pipeline.click(
|
| 208 |
lambda metric, language: add_rank_and_format(
|
| 209 |
pipeline_handler.render_df(metric, language),
|
| 210 |
+
benchmark_version=3,
|
| 211 |
+
is_pipeline=True
|
| 212 |
),
|
| 213 |
inputs=[metric_dropdown_pipeline, language_dropdown_pipeline],
|
| 214 |
outputs=dataframe_pipeline,
|
|
|
|
| 226 |
def refresh_pipeline_data(metric, language):
|
| 227 |
"""Refresh pipeline data when metric or language changes."""
|
| 228 |
df = pipeline_handler.render_df(metric, language)
|
| 229 |
+
return add_rank_and_format(df, benchmark_version=3, is_pipeline=True)
|
| 230 |
|
| 231 |
metric_dropdown_pipeline.change(
|
| 232 |
refresh_pipeline_data,
|
app/utils.py
CHANGED
|
@@ -1,7 +1,14 @@
|
|
| 1 |
|
| 2 |
|
| 3 |
-
def make_clickable_model(model_name, link=None):
|
| 4 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
desanitized_model_name = model_name.replace("__", "/")
|
| 6 |
desanitized_model_name = desanitized_model_name.replace("_", "/")
|
| 7 |
desanitized_model_name = desanitized_model_name.replace("-thisisapoint-", ".")
|
|
@@ -11,7 +18,8 @@ def make_clickable_model(model_name, link=None):
|
|
| 11 |
if "/ocr" in desanitized_model_name:
|
| 12 |
desanitized_model_name = desanitized_model_name.replace("/ocr", "")
|
| 13 |
|
| 14 |
-
link
|
|
|
|
| 15 |
|
| 16 |
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{desanitized_model_name}</a>'
|
| 17 |
|
|
@@ -51,11 +59,11 @@ def add_rank(df, benchmark_version=1, selected_columns=None):
|
|
| 51 |
return df
|
| 52 |
|
| 53 |
|
| 54 |
-
def add_rank_and_format(df, benchmark_version=1, selected_columns=None):
|
| 55 |
df = df.reset_index()
|
| 56 |
df = df.rename(columns={"index": "Model"})
|
| 57 |
df = add_rank(df, benchmark_version, selected_columns)
|
| 58 |
-
df["Model"] = df["Model"].apply(make_clickable_model)
|
| 59 |
# df = remove_duplicates(df)
|
| 60 |
return df
|
| 61 |
|
|
@@ -92,7 +100,7 @@ def get_pipeline_refresh_function(pipeline_handler):
|
|
| 92 |
def _refresh(metric):
|
| 93 |
pipeline_handler.get_pipeline_data()
|
| 94 |
data = pipeline_handler.render_df(metric)
|
| 95 |
-
df = add_rank_and_format(data, benchmark_version=3)
|
| 96 |
return df
|
| 97 |
|
| 98 |
return _refresh
|
|
|
|
| 1 |
|
| 2 |
|
| 3 |
+
def make_clickable_model(model_name, link=None, is_pipeline=False):
|
| 4 |
+
if is_pipeline:
|
| 5 |
+
# For pipelines: keep underscores as-is, only process __ and -thisisapoint-
|
| 6 |
+
desanitized_model_name = model_name.replace("__", "/")
|
| 7 |
+
desanitized_model_name = desanitized_model_name.replace("-thisisapoint-", ".")
|
| 8 |
+
if link is None:
|
| 9 |
+
link = f"https://github.com/illuin-tech/vidore-benchmark/blob/vidore_v3_pipeline/results/pipeline_descriptions/{desanitized_model_name}/description.json"
|
| 10 |
+
else:
|
| 11 |
+
# For regular models: replace __ and _ with /, and -thisisapoint- with .
|
| 12 |
desanitized_model_name = model_name.replace("__", "/")
|
| 13 |
desanitized_model_name = desanitized_model_name.replace("_", "/")
|
| 14 |
desanitized_model_name = desanitized_model_name.replace("-thisisapoint-", ".")
|
|
|
|
| 18 |
if "/ocr" in desanitized_model_name:
|
| 19 |
desanitized_model_name = desanitized_model_name.replace("/ocr", "")
|
| 20 |
|
| 21 |
+
if link is None:
|
| 22 |
+
link = "https://huggingface.co/" + desanitized_model_name
|
| 23 |
|
| 24 |
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{desanitized_model_name}</a>'
|
| 25 |
|
|
|
|
| 59 |
return df
|
| 60 |
|
| 61 |
|
| 62 |
+
def add_rank_and_format(df, benchmark_version=1, selected_columns=None, is_pipeline=False):
|
| 63 |
df = df.reset_index()
|
| 64 |
df = df.rename(columns={"index": "Model"})
|
| 65 |
df = add_rank(df, benchmark_version, selected_columns)
|
| 66 |
+
df["Model"] = df["Model"].apply(lambda x: make_clickable_model(x, is_pipeline=is_pipeline))
|
| 67 |
# df = remove_duplicates(df)
|
| 68 |
return df
|
| 69 |
|
|
|
|
| 100 |
def _refresh(metric):
|
| 101 |
pipeline_handler.get_pipeline_data()
|
| 102 |
data = pipeline_handler.render_df(metric)
|
| 103 |
+
df = add_rank_and_format(data, benchmark_version=3, is_pipeline=True)
|
| 104 |
return df
|
| 105 |
|
| 106 |
return _refresh
|
data/pipeline_handler.py
CHANGED
|
@@ -10,7 +10,7 @@ class PipelineHandler:
|
|
| 10 |
|
| 11 |
def __init__(self):
|
| 12 |
self.pipeline_infos = {}
|
| 13 |
-
self.github_base_url = "https://raw.githubusercontent.com/illuin-tech/vidore-benchmark/vidore_v3_pipeline/results"
|
| 14 |
self.available_datasets = []
|
| 15 |
self.available_languages = ["overall"] # Default languages available
|
| 16 |
|
|
@@ -23,7 +23,7 @@ class PipelineHandler:
|
|
| 23 |
|
| 24 |
def get_pipeline_folders_from_github(self) -> List[str]:
|
| 25 |
"""Get list of pipeline folders from GitHub API."""
|
| 26 |
-
api_url = "https://api.github.com/repos/illuin-tech/vidore-benchmark/contents/results?ref=vidore_v3_pipeline"
|
| 27 |
|
| 28 |
try:
|
| 29 |
response = requests.get(api_url, headers=self.headers)
|
|
@@ -39,7 +39,7 @@ class PipelineHandler:
|
|
| 39 |
|
| 40 |
def get_dataset_files_from_github(self, pipeline_name: str) -> List[str]:
|
| 41 |
"""Get list of dataset JSON files for a specific pipeline from GitHub API."""
|
| 42 |
-
api_url = f"https://api.github.com/repos/illuin-tech/vidore-benchmark/contents/results/{pipeline_name}?ref=vidore_v3_pipeline"
|
| 43 |
|
| 44 |
try:
|
| 45 |
response = requests.get(api_url, headers=self.headers)
|
|
|
|
| 10 |
|
| 11 |
def __init__(self):
|
| 12 |
self.pipeline_infos = {}
|
| 13 |
+
self.github_base_url = "https://raw.githubusercontent.com/illuin-tech/vidore-benchmark/vidore_v3_pipeline/results/metrics"
|
| 14 |
self.available_datasets = []
|
| 15 |
self.available_languages = ["overall"] # Default languages available
|
| 16 |
|
|
|
|
| 23 |
|
| 24 |
def get_pipeline_folders_from_github(self) -> List[str]:
|
| 25 |
"""Get list of pipeline folders from GitHub API."""
|
| 26 |
+
api_url = "https://api.github.com/repos/illuin-tech/vidore-benchmark/contents/results/metrics?ref=vidore_v3_pipeline"
|
| 27 |
|
| 28 |
try:
|
| 29 |
response = requests.get(api_url, headers=self.headers)
|
|
|
|
| 39 |
|
| 40 |
def get_dataset_files_from_github(self, pipeline_name: str) -> List[str]:
|
| 41 |
"""Get list of dataset JSON files for a specific pipeline from GitHub API."""
|
| 42 |
+
api_url = f"https://api.github.com/repos/illuin-tech/vidore-benchmark/contents/results/metrics/{pipeline_name}?ref=vidore_v3_pipeline"
|
| 43 |
|
| 44 |
try:
|
| 45 |
response = requests.get(api_url, headers=self.headers)
|