CodeMode Agent
Deploy CodeMode via Agent
463fc7e
import torch
import torch.nn as nn
from transformers import AutoModel, AutoConfig
class CodeEmbedder(nn.Module):
"""
A wrapper around a Transformer model (default: CodeBERT) to produce
dense vector embeddings for code snippets using Mean Pooling.
"""
def __init__(self, model_name_or_path="microsoft/codebert-base", trust_remote_code=False):
super(CodeEmbedder, self).__init__()
self.config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=trust_remote_code)
self.encoder = AutoModel.from_pretrained(model_name_or_path, config=self.config, trust_remote_code=trust_remote_code)
def mean_pooling(self, token_embeddings, attention_mask):
"""
Average the token embeddings, ignoring padding tokens.
"""
# attention_mask: (batch_size, seq_len)
# token_embeddings: (batch_size, seq_len, hidden_dim)
# Expand mask to match embedding dimensions
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
# Sum embeddings (ignoring padding)
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
# Count non-padding tokens (prevent division by zero with clamp)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
def forward(self, input_ids, attention_mask):
# Pass through the transformer
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
# Extract last hidden state
# Shape: (batch_size, seq_len, hidden_dim)
last_hidden_state = outputs.last_hidden_state
# Perform Mean Pooling (Better than CLS token for sentence similarity)
embeddings = self.mean_pooling(last_hidden_state, attention_mask)
# Normalize embeddings (Optional but recommended for cosine similarity)
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
return embeddings