metadata
license: apache-2.0
library_name: diffusers
pipeline_tag: unconditional-image-generation
base_model: shallowdream204/BitDance-ImageNet
language:
- en
tags:
- bitdance
- imagenet
- class-conditional
- custom-pipeline
- diffusers
BitDance-ImageNet (Diffusers)
Diffusers-compatible BitDance ImageNet checkpoints for class-conditional generation at 256x256.
Available Subfolders
BitDance_B_1x(parallel_num=1)BitDance_B_4x(parallel_num=4)BitDance_B_16x(parallel_num=16)BitDance_L_1x(parallel_num=1)BitDance_H_1x(parallel_num=1)
All variants include a custom BitDanceImageNetPipeline and support ImageNet class IDs (0-999).
Requirements
flash-attnis required for model execution and sampling.- Install it in your environment before loading the pipeline.
Quickstart (native diffusers)
import torch
from diffusers import DiffusionPipeline
repo_id = "BiliSakura/BitDance-ImageNet-diffusers"
subfolder = "BitDance_B_1x" # or BitDance_B_4x, BitDance_B_16x, BitDance_L_1x, BitDance_H_1x
pipe = DiffusionPipeline.from_pretrained(
repo_id,
subfolder=subfolder,
trust_remote_code=True,
torch_dtype=torch.float16,
).to("cuda")
# ImageNet class 207 = golden retriever
out = pipe(
class_labels=207,
num_images_per_label=1,
sample_steps=100,
cfg_scale=4.6,
)
out.images[0].save("bitdance_imagenet.png")
Local Path Note
When loading from a local clone, do not point from_pretrained to the repo root unless you also provide subfolder=....
Each variant folder contains its own model_index.json, so the most reliable local usage is to load the variant directory directly:
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"/path/to/BitDance-ImageNet-diffusers/BitDance_B_1x",
trust_remote_code=True,
)
Model Metadata
- Pipeline class:
BitDanceImageNetPipeline - Diffusers version in configs:
0.36.0 - Resolution:
256x256 - Number of classes:
1000 - Autoencoder class:
BitDanceImageNetAutoencoder
Citation
If you use this model, please cite BitDance and Diffusers:
@article{ai2026bitdance,
title = {BitDance: Scaling Autoregressive Generative Models with Binary Tokens},
author = {Ai, Yuang and Han, Jiaming and Zhuang, Shaobin and Hu, Xuefeng and Yang, Ziyan and Yang, Zhenheng and Huang, Huaibo and Yue, Xiangyu and Chen, Hao},
journal = {arXiv preprint arXiv:2602.14041},
year = {2026}
}
@inproceedings{von-platen-etal-2022-diffusers,
title = {Diffusers: State-of-the-art diffusion models},
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Damar Jablonski and Hernan Bischof and Thomas Wolf},
booktitle = {GitHub repository},
year = {2022},
url = {https://github.com/huggingface/diffusers}
}
License
This repository is distributed under the Apache-2.0 license, consistent with the upstream BitDance release.