Transformers.js documentation
models
models
Definitions of all models available in Transformers.js.
Example: Load and run an AutoModel.
import { AutoModel, AutoTokenizer } from '@huggingface/transformers';
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/bert-base-uncased');
const model = await AutoModel.from_pretrained('Xenova/bert-base-uncased');
const inputs = await tokenizer('I love transformers!');
const { logits } = await model(inputs);
// Tensor {
// data: Float32Array(183132) [-7.117443084716797, -7.107812881469727, -7.092104911804199, ...]
// dims: (3) [1, 6, 30522],
// type: "float32",
// size: 183132,
// }We also provide other AutoModels (listed below), which you can use in the same way as the Python library. For example:
Example: Load and run an AutoModelForSeq2SeqLM.
import { AutoModelForSeq2SeqLM, AutoTokenizer } from '@huggingface/transformers';
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/t5-small');
const model = await AutoModelForSeq2SeqLM.from_pretrained('Xenova/t5-small');
const { input_ids } = await tokenizer('translate English to German: I love transformers!');
const outputs = await model.generate(input_ids);
const decoded = tokenizer.decode(outputs[0], { skip_special_tokens: true });
// 'Ich liebe Transformatoren!'- models
- static
- .AutoModel
new AutoModel().MODEL_CLASS_MAPPINGS:Array.<Map>
- .AutoModelForSequenceClassification
- .AutoModelForTokenClassification
- .AutoModelForSeq2SeqLM
- .AutoModelForSpeechSeq2Seq
- .AutoModelForTextToSpectrogram
- .AutoModelForTextToWaveform
- .AutoModelForCausalLM
- .AutoModelForMaskedLM
- .AutoModelForQuestionAnswering
- .AutoModelForVision2Seq
- .AutoModelForImageClassification
- .AutoModelForImageSegmentation
- .AutoModelForSemanticSegmentation
- .AutoModelForUniversalSegmentation
- .AutoModelForObjectDetection
- .AutoModelForMaskGeneration
- .AutoModel
- inner
- ~PretrainedMixin
- instance
.MODEL_CLASS_MAPPINGS:Array.<Map>.BASE_IF_FAIL
- static
.from_pretrained():Object.from_pretrained
- instance
- ~PretrainedMixin
- static
models.AutoModel
Helper class which is used to instantiate pretrained models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
- .AutoModel
new AutoModel().MODEL_CLASS_MAPPINGS:Array.<Map>
new AutoModel()
Example
const model = await AutoModel.from_pretrained('Xenova/bert-base-uncased');autoModel.MODEL_CLASS_MAPPINGS : Array. < Map >
Kind: instance property of AutoModel
models.AutoModelForSequenceClassification
Helper class which is used to instantiate pretrained sequence classification models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForSequenceClassification()
Example
const model = await AutoModelForSequenceClassification.from_pretrained('Xenova/distilbert-base-uncased-finetuned-sst-2-english');models.AutoModelForTokenClassification
Helper class which is used to instantiate pretrained token classification models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForTokenClassification()
Example
const model = await AutoModelForTokenClassification.from_pretrained('Xenova/distilbert-base-multilingual-cased-ner-hrl');models.AutoModelForSeq2SeqLM
Helper class which is used to instantiate pretrained sequence-to-sequence models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForSeq2SeqLM()
Example
const model = await AutoModelForSeq2SeqLM.from_pretrained('Xenova/t5-small');models.AutoModelForSpeechSeq2Seq
Helper class which is used to instantiate pretrained sequence-to-sequence speech-to-text models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForSpeechSeq2Seq()
Example
const model = await AutoModelForSpeechSeq2Seq.from_pretrained('openai/whisper-tiny.en');models.AutoModelForTextToSpectrogram
Helper class which is used to instantiate pretrained sequence-to-sequence text-to-spectrogram models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForTextToSpectrogram()
Example
const model = await AutoModelForTextToSpectrogram.from_pretrained('microsoft/speecht5_tts');models.AutoModelForTextToWaveform
Helper class which is used to instantiate pretrained text-to-waveform models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForTextToWaveform()
Example
const model = await AutoModelForTextToSpectrogram.from_pretrained('facebook/mms-tts-eng');models.AutoModelForCausalLM
Helper class which is used to instantiate pretrained causal language models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForCausalLM()
Example
const model = await AutoModelForCausalLM.from_pretrained('Xenova/gpt2');models.AutoModelForMaskedLM
Helper class which is used to instantiate pretrained masked language models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForMaskedLM()
Example
const model = await AutoModelForMaskedLM.from_pretrained('Xenova/bert-base-uncased');models.AutoModelForQuestionAnswering
Helper class which is used to instantiate pretrained question answering models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForQuestionAnswering()
Example
const model = await AutoModelForQuestionAnswering.from_pretrained('Xenova/distilbert-base-cased-distilled-squad');models.AutoModelForVision2Seq
Helper class which is used to instantiate pretrained vision-to-sequence models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForVision2Seq()
Example
const model = await AutoModelForVision2Seq.from_pretrained('Xenova/vit-gpt2-image-captioning');models.AutoModelForImageClassification
Helper class which is used to instantiate pretrained image classification models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForImageClassification()
Example
const model = await AutoModelForImageClassification.from_pretrained('Xenova/vit-base-patch16-224');models.AutoModelForImageSegmentation
Helper class which is used to instantiate pretrained image segmentation models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForImageSegmentation()
Example
const model = await AutoModelForImageSegmentation.from_pretrained('Xenova/detr-resnet-50-panoptic');models.AutoModelForSemanticSegmentation
Helper class which is used to instantiate pretrained image segmentation models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForSemanticSegmentation()
Example
const model = await AutoModelForSemanticSegmentation.from_pretrained('nvidia/segformer-b3-finetuned-cityscapes-1024-1024');models.AutoModelForUniversalSegmentation
Helper class which is used to instantiate pretrained universal image segmentation models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForUniversalSegmentation()
Example
const model = await AutoModelForUniversalSegmentation.from_pretrained('hf-internal-testing/tiny-random-MaskFormerForInstanceSegmentation');models.AutoModelForObjectDetection
Helper class which is used to instantiate pretrained object detection models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForObjectDetection()
Example
const model = await AutoModelForObjectDetection.from_pretrained('Xenova/detr-resnet-50');models.AutoModelForMaskGeneration
Helper class which is used to instantiate pretrained mask generation models with the from_pretrained function.
The chosen model class is determined by the type specified in the model config.
Kind: static class of models
new AutoModelForMaskGeneration()
Example
const model = await AutoModelForMaskGeneration.from_pretrained('Xenova/sam-vit-base');models~PretrainedMixin
Base class of all AutoModels. Contains the from_pretrained function
which is used to instantiate pretrained models.
Kind: inner class of models
- ~PretrainedMixin
- instance
.MODEL_CLASS_MAPPINGS:Array.<Map>.BASE_IF_FAIL
- static
.from_pretrained():Object.from_pretrained
- instance
pretrainedMixin.MODEL_CLASS_MAPPINGS : Array. < Map >
Mapping from model type to model class.
Kind: instance property of PretrainedMixin
pretrainedMixin.BASE_IF_FAIL
Whether to attempt to instantiate the base class (PretrainedModel) if
the model type is not found in the mapping.
Kind: instance property of PretrainedMixin
PretrainedMixin.from_pretrained() : Object.from_pretrained
Kind: static method of PretrainedMixin
Update on GitHub