Transformers.js documentation

pipelines

You are viewing main version, which requires installation from source. If you'd like regular npm install, checkout the latest stable version (v3.8.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

pipelines

Pipelines provide a high-level, easy to use, API for running machine learning models.

Example: Instantiate pipeline using the pipeline function.

import { pipeline } from '@huggingface/transformers';

const classifier = await pipeline('sentiment-analysis');
const output = await classifier('I love transformers!');
// [{'label': 'POSITIVE', 'score': 0.999817686}]

pipelines.pipeline(task, [model], [options]) ⇒ Promise. < AllTasks >

Utility factory method to build a Pipeline object.

Kind: static method of pipelines
Returns: Promise.<AllTasks> - A Pipeline object for the specified task.
Throws:

  • Error If an unsupported pipeline is requested.
ParamTypeDefaultDescription
taskT

The task defining which pipeline will be returned. Currently accepted tasks are:

  • "audio-classification": will return a AudioClassificationPipeline.
  • "automatic-speech-recognition": will return a AutomaticSpeechRecognitionPipeline.
  • "depth-estimation": will return a DepthEstimationPipeline.
  • "document-question-answering": will return a DocumentQuestionAnsweringPipeline.
  • "feature-extraction": will return a FeatureExtractionPipeline.
  • "fill-mask": will return a FillMaskPipeline.
  • "image-classification": will return a ImageClassificationPipeline.
  • "image-segmentation": will return a ImageSegmentationPipeline.
  • "image-to-text": will return a ImageToTextPipeline.
  • "object-detection": will return a ObjectDetectionPipeline.
  • "question-answering": will return a QuestionAnsweringPipeline.
  • "summarization": will return a SummarizationPipeline.
  • "text2text-generation": will return a Text2TextGenerationPipeline.
  • "text-classification" (alias "sentiment-analysis" available): will return a TextClassificationPipeline.
  • "text-generation": will return a TextGenerationPipeline.
  • "token-classification" (alias "ner" available): will return a TokenClassificationPipeline.
  • "translation": will return a TranslationPipeline.
  • "translation_xx_to_yy": will return a TranslationPipeline.
  • "zero-shot-classification": will return a ZeroShotClassificationPipeline.
  • "zero-shot-audio-classification": will return a ZeroShotAudioClassificationPipeline.
  • "zero-shot-image-classification": will return a ZeroShotImageClassificationPipeline.
  • "zero-shot-object-detection": will return a ZeroShotObjectDetectionPipeline.
[model]stringnull

The name of the pre-trained model to use. If not specified, the default model for the task will be used.

[options]PretrainedModelOptions

Optional parameters for the pipeline.


pipelines~AllTasks : string

All possible pipeline types.

Kind: inner typedef of pipelines


Update on GitHub